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1. Introduction

The remarkable success enjoyed by the Hardy-Littlewood method in its application to diagonal dio-
phantine problems rests in large part on the theory of exponential sums in a single variable. Following
almost a century of intense investigations, the latter body of knowledge has reached a mature state
which, although falling short of what is expected to be true, nonetheless suffices for the majority of
applications. By contrast, exponential sums in many variables remain poorly understood, and conse-
quently applications of the Hardy-Littlewood method to problems concerning the solubility of systems
of forms in many variables are fraught with difficulties. While the methods of Weyl and of Vinogradov
have been extended to estimate exponential sums in many variables (see, in particular, Arkhipov and
Karatsuba [1], Arkhipov, Karatsuba and Chubarikov [2], Tartakovsky [26], Davenport [11], [12], [13],
[14], Birch [4] and Schmidt [25]), in almost all circumstances the strength of the ensuing estimates is
considerably inferior to that of corresponding estimates for Weyl sums in a single variable, and moreover
one is obliged to work under various hypotheses of a geometric nature. Indeed, it is only for exponen-
tial sums over polynomials diagonalisable over C, and non-singular cubic polynomials and their close
kin, that we have estimates of strength to match those for corresponding exponential sums of a single
variable (see Chowla and Davenport [10], Birch and Davenport [5], Heath-Brown [20] and Hooley [21],
[22], [23]). The purpose of this paper is to develop estimates for exponential sums over binary forms
of strength comparable to the best available for corresponding exponential sums of a single variable,
and, moreover, without any serious geometric hypotheses on the form. Since binary forms of degree
exceeding 3 in general fail to diagonalise over C, it should be evident that our conclusions go beyond
those of Birch and Davenport [5]. Our hope is that the methods described herein may spawn ideas for
improved treatments of exponential sums in many variables.

Before describing our main conclusions we require some notation. Suppose that Φ(x, y) ∈ Z[x, y] is a
binary form of degree d exceeding 1. Then we say that Φ is degenerate if there exist complex numbers
α and β such that Φ(x, y) is identically equal to (αx + βy)d. It is easily verified that when Φ(x, y) is
degenerate, then there exist integers a, b and c with Φ(x, y) = a(bx + cy)d. Our first theorem, which
we establish in §3, provides an analogue of Weyl’s inequality for exponential sums over non-degenerate
binary forms. Throughout, we write e(z) for e2πiz.

Theorem 1. Suppose that Φ(x, y) ∈ Z[x, y] is a non-degenerate form of degree d>3. Let α ∈ R, and
suppose that there exist r ∈ Z and q ∈ N with (r, q) = 1 and |α − r/q|6q−2. Finally, suppose that P
and Q are real numbers sufficiently large in terms of the coefficients of Φ, and satisfying P � Q. Then
for each ε > 0, one has∑

16x6P

∑
16y6Q

e(αΦ(x, y))� P 2+ε(q−1 + P−1 + qP−d)22−d

.

We remark that the conclusion of Theorem 1 is identical with that following from the classical version
of Weyl’s inequality (see, for example, Lemma 2.4 of Vaughan [27]) in circumstances where Φ(x, y) is a
diagonal form. Moreover Theorem 1 of Chowla and Davenport [10] establishes the same conclusion as
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Theorem 1 above in the special case where Φ(x, y) is a binary cubic form with non-zero discriminant.
In cases where d > 3, meanwhile, the conclusion of Theorem 1 provides substantially sharper estimates
than would be available through the work of Birch [4] and Schmidt [25]. When d is larger than 12 or
so, a trivial argument employing Vinogradov’s methods yields an estimate superior to that provided by
Theorem 1. We discuss such estimates briefly in §8 below.

The differencing process which leads to the estimate recorded in Theorem 1 may be employed in a
familiar manner to establish mean value estimates for exponential sums over binary forms analogous
to Hua’s Lemma. The details of such a treatment, unfortunately, require knowledge concerning the
number of integral points on certain affine plane curves. Our current state of knowledge on such topics
being incomplete, our conclusions are somewhat weaker than would otherwise be the case. Following
some preliminaries in §§4 and 5, we establish our analogue of Hua’s Lemma in §§6 and 7.

Theorem 2. Suppose that Φ(x, y) ∈ Z[x, y] is a non-degenerate form of degree d>3. When d = 3 or 4
and j is an integer with 16j6d, or when d>5 and j = 1 or 2, one has for each positive number ε the
bound ∫ 1

0

∣∣∣ ∑
06x,y6P

e(αΦ(x, y))
∣∣∣2j−1

dα� P 2j−j+ε.

When d>5 and j is an integer with 16j6d− 1, then for each positive number ε one has∫ 1

0

∣∣∣ ∑
06x,y6P

e(αΦ(x, y))
∣∣∣2j−1

dα� P 2j−j+ 1
2 +ε.

Finally, when d>5, for each positive number ε one has∫ 1

0

∣∣∣ ∑
06x,y6P

e(αΦ(x, y))
∣∣∣ 5
16 2d

dα� P
5
8 2d−d+1+ε

and ∫ 1

0

∣∣∣ ∑
06x,y6P

e(αΦ(x, y))
∣∣∣ 9
16 2d

dα� P
9
8 2d−d+ε.

In circumstances where Φ(x, y) is a diagonal form, the conclusion of Theorem 2 is identical with the
classical version of Hua’s Lemma for d = 3, 4 (see, for example, Lemma 2.5 of Vaughan [27]), and a
little weaker by comparison with this diagonal situation when d>5. Whereas Theorem 2 requires 9

162d

copies of the generating function in order to obtain an optimal mean value estimate, the classical version
of Hua’s Lemma for diagonal forms would require only 2d−1. This discrepency would be remedied by
improved knowledge concerning the number of integer points on certain affine plane curves. Indeed, by
rather involved considerations of absolute irreducibility criteria based on a division into many cases, it
is possible to improve certain of the above exponents to a small extent. Such arguments being rather
lengthy and technical, and in any case limited in their application, we have chosen to present the main
thrust of our ideas and defer any such considerations to a possible future occasion. We note that when
d = 3 and the underlying form has non-zero discriminant, then one may establish the main conclusion
of Theorem 2 through the methods of Chowla and Davenport [10] (see Lemma 4.1 of Brüdern and
Wooley [9]). Finally, when d is larger than 11 or so, it is possible to apply a trivial argument involving
Vinogradov’s methods in order to obtain conclusions superior to those stemming from Theorem 2. We
discuss such estimates in §8 below.

As our first application of the new estimates provided by Theorems 1 and 2, in §9 we consider
the solubility of homogeneous diophantine equations which split as sums of binary forms. In order to
contain our deliberations within this paper, we illustrate our ideas with a relatively simple conclusion
typical of the kind attainable through the methods of §9.

Theorem 3. Let d be an integer with d>3, and define s0(d) by

s0(d) =

{
2d−1, when d = 3, 4,
9
162d, when d>5.
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Let s > s0(d), and let Φj ∈ Z[x, y] (16j6s) be homogeneous forms of degree d with non-zero discrimi-
nants. Let N (P ) = Ns(P ; Φ) denote the number of solutions of the diophantine equation

Φ1(x1, y1) + · · ·+ Φs(xs, ys) = 0, (1.1)

subject to |xj |6P and |yj |6P (16j6s). Then provided that the form Φ1(x1, y1) + · · · + Φs(xs, ys) is
indefinite, one has

Ns(P ; Φ) = CSP 2s−d +OΦ(P 2s−d−δ),

for some positive number δ, where C denotes the volume of the (2s − 1)-dimensional hypersurface de-
termined by the equation (1.1) contained in the box [−1, 1]s, and S denotes the singular series

∏
p vp,

where the product is over prime numbers, and

vp = lim
h→∞

ph(1−2s)Ms(p
h; Φ),

in which Ms(p
h; Φ) denotes the number of solutions of the congruence

Φ1(x1, y1) + · · ·+ Φs(xs, ys) ≡ 0 (mod ph),

with 16xj , yj6ph (16j6s).

Corollary. Under the hypotheses of Theorem 3, whenever

s > max{s0(d), d2},

and the form Φ1(x1, y1) + · · ·+ Φs(xs, ys) is indefinite, one has

P 2s−d �Φ Ns(P ; Φ)�Φ P 2s−d.

An examination of the methods employed in §9 in the course of the proof of Theorem 3 will reveal
that there is no difficulty in principle in obtaining an asymptotic formula for the number of solutions
of the equation (1.1) satisfying (x,y) ∈ DP ∩ Z2s, for any convex subset D of R2s. Indeed, with extra
effort the condition that the forms Φj have non-zero discriminant can also be removed, so long as the
forms are at least non-degenerate. We have imposed the condition that the discriminants be non-zero
in the statement of Theorem 3 in order to avoid discussion of possible singularities, but this is an
entirely technical consideration. We remark that for larger d the permissible s0(d) may be reduced in
line with the discussion of §8 below. In particular, when d is large, the main conclusion of the corollary
to Theorem 3 holds with s = d2(log d + log log d + O(1)). Further, we note that the condition in the
corollary that s exceed d2 is imposed purely to guarantee the existence of non-singular p-adic solutions
of the equation (1.1) for each prime p. We note that s0(d)>d2 for d>6, and moreover that results on
additive quintics in the literature enable the hypothesis of the corollary to be relaxed when d = 5 to the
condition that s > 18. Presumably the expression d2 in the statement of the corollary can be replaced
by 1

2d
2 (at least for odd d), but at this time there appears to be no work in the literature concerning the

local solubility of equations of the shape (1.1) for d>4. When d = 3, of course, it follows from Theorem
1.1 of Brüdern and Wooley [9] that for each positive number ε, one has

P 5−ε �ε,Φ N4(P ; Φ)�ε,Φ P 5+ε.

Finally, we note that the techniques discussed in §9 may be applied also to establish that all large
integers n satisfying the necessary local solubility conditions are represented non-trivially by a sum of
s non-degenerate binary forms of degree d, provided only that s > s0(d). Thus we make a non-trivial
contribution to Problem 31 of Lewis [24].

A second application of Theorem 1, which we discuss in §10, concerns small values of binary forms
modulo one. When θ ∈ R, we write ‖θ‖ for miny∈Z |θ − y|.
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Theorem 4. Let d be an integer with d>3, and let Φ(x, y) ∈ Z[x, y] be a non-degenerate homogeneous
form of degree d. Suppose that α is a real number, and δ is any positive number. Then there is a real
number N(δ, d) such that whenever N>N(δ, d), one has

min
16m,n6N

‖αΦ(m,n)‖6Nδ−22−d

.

The conclusion of the theorem is of the same strength as would be attained via classical methods
(see Baker [3]) for diagonal forms. We remark that by fixing one of the variables in the binary form to
be a multiple of the other, the methods of Wooley [32] yield sharper conclusions than those of Theorem
4 when d exceeds 8 or thereabouts.

It transpires that unpleasant subcases must be negotiated in our proofs of Theorems 1 and 2, and
the ensuing complications obscure the simple ideas motivating our proofs. It may therefore be helpful
to sketch the argument underlying the simplest case considered in Theorem 1. Consider then a binary
cubic form with integral coefficients, say Φ(X,Y ) = AX3 + BX2Y + CXY 2 + DY 3. Our first idea is
to “complete the cube” to obtain

27A2Φ(X,Y ) =(3AX +BY )3 + (9AC − 3B2)(3AX +BY )Y 2

+ (27A2D − 9ABC + 2B3)Y 3.

Thus, when A is non-zero, one may make a non-singular linear change of variables to convert the original
form Φ(X,Y ) into an associated form Ψ(x, y) of the shape Ψ(x, y) = ax3 + bxy2 + cy3, with a 6= 0.
It transpires that such a transformation is possible, in fact, whenever Φ(X,Y ) is non-degenerate, and
indeed one then has that one at least of b and c is non-zero. Moreover, an exponential sum over Φ(X,Y )
may be estimated in terms of an associated exponential sum over the polynomial Ψ(x, y). We discuss
such transformations in detail in §2. For the purposes of exposition, therefore, it suffices to estimate
the exponential sum

h(α) =
∑
|x|6X

∑
|y|6X

e(α(ax3 + bxy2 + cy3)).

Since the situation in which b = 0 is the diagonal case accessible to classical methods, we suppose that
b 6= 0. Our second idea is to use an operation more trivial than Weyl differencing, that is, we apply
Cauchy’s inequality. Thus we obtain

|h(α)|2 � X
∑
|x|6X

∣∣∣ ∑
|y|6X

e(α(ax3 + bxy2 + cy3))
∣∣∣2

= X
∑
|x|6X

∑
|y1|6X

∑
|y2|6X

e(α(bx(y2
1 − y2

2) + c(y3
1 − y3

2))). (1.2)

On interchanging the order of summation and employing a simple estimate for the divisor function, one
obtains

|h(α)|2 � X
∑
|y1|6X

∑
|y2|6X

∣∣∣ ∑
|x|6X

e(αbx(y2
1 − y2

2))
∣∣∣

� X3 +X1+ε
∑

0<|m|6|b|X2

min{X, ‖mα‖−1}, (1.3)

and by comparison with the familiar situation of the cubic Weyl sum subject to two Weyl differencing
steps, one obtains the desired analogue of Weyl’s inequality recorded in Theorem 1. For forms of higher
degree, one may proceed similarly to “complete the dth power”, and then apply Cauchy’s inequality.
In a manner analogous to the process visible in (1.2), the corresponding exponential sum has degree at
most d−2 with respect to one of the underlying variables. When that degree is precisely d−2, one may
Weyl difference d − 3 times in order to arrive at a familiar situation analogous to (1.3). If this degree
is less than d− 2, however, a more sophisticated approach is required. In any case, the total number of
differencing steps, including the initial “trivial step”, is only d − 2, compared to d − 1 in the classical
treatment, and it is this advantage which is responsible for the relative success of our approach.
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Throughout this paper, implicit constants occurring in Vinogradov’s notation � and � will depend
at most on the coefficients of the implicit binary forms, a small positive number ε, exponents d and
k, and quantities occurring as subscripts to the latter notations, unless otherwise indicated. We write
f � g when f � g and g � f . When x is a real number, we write [x] for the greatest integer not
exceeding x. Also, we use vector notation for brevity. Thus, for example, the s-tuple (Φ1, . . . ,Φs)
will be abbreviated simply to Φ. In an effort to simplify our exposition, we adopt the convention that
whenever ε appears in a statement, we are implicitly asserting that the statement holds for each ε > 0.
Note that the “value” of ε may consequently change from statement to statement.

The author is grateful to the referee for useful comments.

2. Initial transformations

Let k be an integer with k>3 and let Φ(x, y) ∈ Z[x, y] be a non-degenerate homogeneous polynomial
of degree k. Let P and Q be large real numbers with P � Q, and define the exponential sum F (α) =
F (α;P,Q) by

F (α;P,Q) =
∑

16x6P

∑
16y6Q

e(αΦ(x, y)). (2.1)

Before advancing to establish our main conclusions we transform the exponential sum F (α) into a
related sum susceptible to our differencing procedure. We begin our discussion with a preliminary
observation which permits us to save effort in our subsequent deliberations. Throughout, we abbreviate
∂
∂xΦ(x, y) to Φx(x, y) and likewise ∂

∂yΦ(x, y) to Φy(x, y).

Lemma 2.1. Suppose that Θ(x, y) ∈ Z[x, y] is a non-degenerate binary form of degree k exceeding 2.
Then there exist integers a, b, c, d with the property that

(i) Θ(a, c) 6= 0,
(ii) bΘx(a, c) + dΘy(a, c) = 0,

(iii) ad− bc 6= 0,
(iv) Θ(ax+ by, cx+ dy) depends explicitly on y.

Proof. Observe that since Θ(x, y) is non-degenerate, then a trivial counting argument shows that there
exist integers a and c, not both zero, with Θ(a, c) 6= 0. This shows that the property (i) holds. Next,
since the homogeneity of Θ(x, y) ensures that

xΘx(x, y) + yΘy(x, y) = kΘ(x, y),

we find from (i) that
aΘx(a, c) + cΘy(a, c) 6= 0. (2.2)

In particular, therefore, at least one of Θx(a, c) and Θy(a, c) is non-zero. Consequently, there exist
integers b and d, with (b, d) linearly independent of (a, c), satisfying the equation

bΘx(a, c) + dΘy(a, c) = 0.

This confirms property (ii). It follows from the linear independence of (a, c) and (b, d), moreover, that
ad − bc 6= 0, whence property (iii) also holds. Finally, since it follows from property (iii) that the
transformation (x, y) −→ (ax+ by, cx+dy) is non-singular, one may conclude from the non-degeneracy
of Θ(x, y) that the polynomial Θ(ax + by, cx + dy) must depend explicitly on both x and y. This
establishes property (iv), and concludes the proof of the lemma.

We now relate the exponential sum F (α) to a related, though simpler, exponential sum. In this
context it is useful, when Φ(x, y) ∈ Z[x, y], to describe the polynomial Ψ as being a condensation of Φ
when the following condition (C) is satisfied.

(C) We have Ψ(u, v) ∈ Z[u, v], and the coefficients of Ψ depend at most on those of Φ. Further, the
polynomial Ψ(u, v) has the same degree as Φ(x, y), and takes the shape

Ψ(u, v) = Auk +Buk−tvt +
k∑

j=t+1

Cju
k−jvj , (2.3)

with AB 6= 0 and 26t6k.
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Lemma 2.2. There is a condensation Ψ of Φ, a positive integer D depending at most on the coefficients
of Φ, and a positive real number X with X � P , satisfying the property that for every real number α
one has

|F (α;P,Q)| � (logX)2 sup
β,γ∈R

|H(α/D;β, γ;X)|,

where
H(θ;β, γ;X) =

∑
|u|6X

∑
|v|6X

e(θΨ(u, v) + βu+ γv). (2.4)

Proof. We begin by recalling the hypotheses concerning Φ from the opening paragraph of this section,
and we apply Lemma 2.1 to conclude that there exist integers a, b, c, d satisfying the properties (i)–(iv)
with Θ = Φ. Define the polynomial Ψ(u, v) by

Ψ(u, v) = Φ(au+ bv, cu+ dv). (2.5)

Then we can write Ψ(u, v) in the shape (2.3) for a suitable natural number t with 16t6k, and integers
A, B and Cj (t+ 16j6k). By property (i) of Lemma 2.1 with Θ = Φ, it follows from (2.5) that A 6= 0.
Moreover property (ii) ensures that the coefficient of uk−1v in Ψ(u, v) vanishes, so that one may take
t>2 in (2.3). Furthermore, in view of property (iv) of Lemma 2.1, we may suppose that B is non-zero.
Then we may conclude that the polynomial Ψ satisfies the condensation property (C) above.

Next write ∆ = ad− bc, and observe that property (iii) of Lemma 2.1 for Θ = Φ ensures that ∆ 6= 0.
Plainly ∆ depends at most on the coefficients of Φ. It follows from (2.1) and (2.5) that

F (α;P,Q) =
∑

16x6P

∑
16y6Q

e

(
αΨ

(
dx− by

∆
,
ay − cx

∆

))
.

On breaking the ranges of summation into arithmetic progressions modulo |∆|, we therefore conclude
that

F (α;P,Q) =

|∆|∑
r=1

|∆|∑
s=1

∑
z−6z6z+

∑
w−6w6w+

e(θΨ(Z,W )), (2.6)

where we write θ = α/∆k, and

z− = min{(1− r)/∆, (P − r)/∆}, z+ = max{(1− r)/∆, (P − r)/∆},
w− = min{(1− s)/∆, (Q− s)/∆}, w+ = max{(1− s)/∆, (Q− s)/∆},

Z = d(z∆ + r)− b(w∆ + s) and W = a(w∆ + s)− c(z∆ + r). (2.7)

On recalling (2.4), and writing

X = max{|d|P + |b|Q, |c|P + |a|Q}, (2.8)

it follows from (2.6) and (2.7) via orthogonality that

F (α;P,Q) =

|∆|∑
r=1

|∆|∑
s=1

∫ 1

0

∫ 1

0

H(θ;β, γ;X)M(∆β,∆γ)dβdγ,

where
M(β, γ) =

∑
z−6z6z+
w−6w6w+

e(β(bw − dz + (bs− dr)/∆)− γ(aw − cz + (as− cr)/∆)).

Consequently,
|F (α;P,Q)| �M(P,Q) sup

β,γ∈R
|H(θ;β, γ;X)|, (2.9)

where

M(P,Q) =

∫ 1

0

∫ 1

0

min{P, ‖∆(cγ − dβ)‖−1}min{Q, ‖∆(bβ − aγ)‖−1}dβdγ.

But by exploiting periodicity modulo 1, and making a change of variables, we obtain

M(P,Q)�
∫ 1

0

∫ 1

0

min{P, ‖λ‖−1}min{Q, ‖µ‖−1}dλdµ� (logP )(logQ).

Thus the proof of the lemma follows immediately from (2.9).

We also require an analogue of Lemma 2.2 suitable for investigating mean value estimates. It tran-
spires that this is almost trivial.
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Lemma 2.3. There is a condensation Ψ of Φ, and a positive real number X with X � P , with the
property that for every natural number s one has∫ 1

0

|F (α;P,Q)|2sdα�
∫ 1

0

|H(α;X)|2sdα,

where we write
H(θ;X) =

∑
|u|6X

∑
|v|6X

e(θΨ(u, v)).

Proof. As in the argument of the first paragraph of the proof of Lemma 2.2, it follows from Lemma
2.1 that there exist integers a, b, c, d satisfying the properties (i)-(iv) with Θ = Φ. As in the proof of
Lemma 2.2, it follows that the polynomial Ψ(u, v) defined by (2.5) is a condensation of Φ, and moreover
that ∫ 1

0

|F (α;P,Q)|2sdα =

∫ 1

0

∣∣∣ ∑
16x6P

∑
16y6Q

e(αΨ(dx− by, ay − cx)/∆k)
∣∣∣2sdα,

where ∆ = ad− bc. On considering the underlying diophantine equation, therefore, we find that∫ 1

0

|F (α;P,Q)|2sdα�
∫ 1

0

∣∣∣ ∑
16x6P

∑
16y6Q

e(αΨ(dx− by, ay − cx))
∣∣∣2sdα

�
∫ 1

0

|H(α;X)|2sdα,

where X is given by (2.8). This completes the proof of the lemma.

3. Weyl’s inequality for binary forms

Before establishing Theorem 1, we arm ourselves with a technical lemma which provides a minor
elaboration on the conclusion of Vaughan [27, Lemma 2.2]. We provide a proof for the sake of com-
pleteness.

Lemma 3.1. Suppose that X, Y and α are real numbers with X>1 and Y>1. Suppose also that D is
a positive integer, and that a ∈ Z and q ∈ N satisfy |α− a/q|6q−2 and (a, q) = 1. Then∑

16x6X

min{Y, ‖αx/D‖−1} � XY (Dq−1 + Y −1 +Dq(XY )−1) log(2DqX).

Proof. Plainly, it suffices to estimate the sum

S =
∑

16x6X

min{XY x−1, ‖αx/D‖−1}.

But by breaking up the summation into arithmetic progressions modulo qD, we obtain

S6
∑

06j6X/(qD)

qD∑
r=1

min

{
XY

Dqj + r
,
∥∥∥ α
D

(Dqj + r)
∥∥∥−1

}
. (3.1)

For each j occurring in the first summation of (3.1), write yj = [αjq2D] and θ = q2α− qa. Then

α

D
(Dqj + r) =

yj + ar

qD
+
{αjq2D}
qD

+
θr

q2D
.

When j = 0 and 16r6 1
2q, therefore,∥∥∥ α

D
(Dqj + r)

∥∥∥>∥∥∥∥ arqD
∥∥∥∥− 1

2qD
>

1

2

∥∥∥∥ arqD
∥∥∥∥ .
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Otherwise, for each j there are at most O(D) values of r for which the inequality∥∥∥ α
D

(Dqj + r)
∥∥∥>1

2

∥∥∥∥yj + ar

qD

∥∥∥∥
fails to hold. Moreover, one has Dqj + r � q(j + 1) in this case. Thus we deduce that

S �
∑

16r6q/2

∥∥∥∥ arqD
∥∥∥∥−1

+
∑

06j6X/(qD)

(
XYD

q(j + 1)
+

qD∑
r=1

Dq-(yj+ar)

∥∥∥∥yj + ar

qD

∥∥∥∥−1
)

� DXY q−1
∑

06j6X

1

j + 1
+ (a,D)

(
X

qD
+ 1

) ∑
16h6qD

qD

h(a,D)
,

and the desired conclusion follows immediately.

We note that in principle one could break the summation implicit in Lemma 3.1 into arithmetic
progressions modulo D, and then appeal to Vaughan [27, Lemma 2.2]. Unfortunately, however, one
then becomes entangled with sums involving expressions of the shape ‖αu+ β‖−1. We have opted here
to avoid such annoying complications, minor as they may be.

We recall the Weyl differencing lemma. Let ∆j denote the jth iterate of the forward differencing
operator, so that for any function φ of a real variable α, one has

∆1(φ(α);β) = φ(α+ β)− φ(α),

and when j is a natural number,

∆j+1(φ(α);β1, . . . , βj+1) = ∆1(∆j(φ(α);β1, . . . , βj);βj+1).

We adopt the convention that ∆0(φ(α);β) = φ(α).

Lemma 3.2. Let X be a positive real number, and let φ be an arbitrary arithmetical function. Write

T (φ) =
∑
|x|6X

e(φ(x)).

Then for each natural number j there exist intervals Ii = Ii(h) (16i6j), possibly empty, satisfying

I1(h1) ⊆ [−X,X] and Ii(h1, . . . , hi) ⊆ Ii−1(h1, . . . , hi−1) (26i6j),

with the property that

|T (φ)|2
j

6(4X + 1)2j−j−1
∑

|h1|62X

· · ·
∑

|hj |62X

Tj ,

and here we write
Tj =

∑
x∈Ij∩Z

e(∆j(φ(x);h1, . . . , hj)).

Proof. This is a trivial variant of Lemma 2.3 of Vaughan [27].

We are now in a position to prove Theorem 1. Suppose that Φ(x, y) ∈ Z[x, y] is a non-degenerate
form of degree k>3, and that Ψ(u, v) is a polynomial satisfying condition (C). Let D be a positive
integer depending at most on the coefficients of Φ. We suppose that α ∈ R, a ∈ Z and q ∈ N
satisfy |α − a/q|6q−2 and (a, q) = 1, and when X is large we aim to estimate the exponential sum
H(α/D;β, γ;X) defined by (2.4).

We start by considering the situation in which Ψ(u, v) takes the shape (2.3) with t = k, so that for
fixed integers A and B depending at most on the coefficients of Φ, one has Ψ(u, v) = Auk +Bvk. Then
by (2.4) we have

H(α/D;β, γ;X) = f(Aα/D;β;X)f(Bα/D; γ;X), (3.2)
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where
f(η; θ;X) =

∑
|u|6X

e(ηuk + θu).

Write C for either A or B, and apply Lemma 3.2 with j = k − 1. Then following a simple calculation
(see, for example, the proof of Vaughan [27, Lemma 2.4]), one obtains for each real number θ the
estimate

|f(Cα/D; θ;X)|2
k−1

� X2k−1−k
∑

|h1|62X

· · ·
∑

|hk−1|62X

∑
x∈Ik−1

e

(
C

D
h1 . . . hk−1pk−1(x; h)

)
, (3.3)

where Ik−1 is an interval of integers contained in [−X,X], and

pk−1(x; h) = 1
2k!α(2x+ h1 + · · ·+ hk−1).

The number of terms counted by the summation in (3.3) with h1 . . . hk−1 equal to zero is O(Xk−1).
Thus, on applying a familiar bound to estimate the sum over x in (3.3), and making use of a simple
estimate for the divisor function, we obtain

|f(Cα/D; θ;X)|2
k−1

� X2k−1−k
(
Xk−1 +Xε

∑
16h6H

min{X, ‖hα/D‖−1}
)
, (3.4)

where H = |C|k!(2X)k−1. Plainly, when q>Xk one has |f(Cα/D; θ;X)|62X + 1 via a trivial estimate.
When 16q < Xk, meanwhile, on recalling that D depends at most on the coefficients of Φ, it follows
from (3.4) and Lemma 3.1 that

|f(Cα/D; θ;X)| � X1+ε(q−1 +X−1 + qX−k)21−k

. (3.5)

Thus the estimate (3.5) in fact holds no matter how large q may be. We may therefore conclude from
(3.2) that

|H(α/D;β, γ;X)| � X2+ε(q−1 +X−1 + qX−k)22−k

. (3.6)

Consider next the situation in which Ψ(u, v) takes the shape (2.3) with 26t6k − 1. Then for fixed
integers Cj (t6j6k) depending at most on the coefficients of Φ, one has

Ψ(u, v1)−Ψ(u, v2) =
k∑
j=t

Cju
k−j(vj1 − v

j
2).

Write

Jγ(θ;u;X) =
∑
|v|6X

e
(
θ

k∑
j=t

Cju
k−jvj + γv

)
.

Then following an application of Cauchy’s inequality to (2.4), we obtain

|H(θ;β, γ;X)|26(2X + 1)
∑
|u|6X

|Jγ(θ;u;X)|2. (3.7)

But Lemma 3.2 yields

|Jγ(θ;u;X)|2
t−1

� X2t−1−t
∑

|h1|62X

· · ·
∑

|ht−1|62X

∑
x∈It−1

e(pγ(x; θ;u; h)), (3.8)

where It−1 is an interval of integers contained in [−X,X], and the polynomial pγ(x; θ;u; h) is defined
by

pγ(x; θ;u; h) = θ
k∑
j=t

Cju
k−j∆t−1(xj ;h1, . . . , ht−1) + γ∆t−1(x;h1, . . . , ht−1). (3.9)
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We remark that the final term depending on γ in (3.9) will vanish whenever t>3.
On applying Hölder’s inequality to (3.7), we obtain

|H(θ;β, γ;X)|2
t−1

� X2t−1−1
∑
|u|6X

|Jγ(θ;u;X)|2
t−1

,

and hence we deduce from (3.8) and (3.9) that

|H(θ;β, γ;X)|2
t−1

� X2t−t−1
∑

|h1|62X

· · ·
∑

|ht−1|62X

∑
x∈It−1

|K(θ;X; h;x)|, (3.10)

where

K(θ;X; h;x) =
∑
|u|6X

e
(
θ

k∑
j=t

Cju
k−j∆t−1(xj ;h1, . . . , ht−1)

)
.

But now Lemma 3.2 yields

|K(θ;X;h;x)|2
k−t−1

� X2k−t−1−k+t
∑
|g1|62X

· · ·
∑

|gk−t−1|62X

∣∣∣ ∑
y∈Ik−t−1

e(θq(y; g,h;x))
∣∣∣, (3.11)

where Ik−t−1 is an interval of integers contained in [−X,X], and the polynomial q(y; g,h;x) is defined
by

q(y; g,h;x) =Ct∆k−t−1(yk−t; g)∆t−1(xt; h)

+ Ct+1∆k−t−1(yk−t−1; g)∆t−1(xt+1; h). (3.12)

Applying Hölder’s inequality next to (3.10), we deduce from (3.11) and (3.12) that

|H(θ;β, γ;X)|2
k−2

� X2k−1−2k−t−1−t
∑

|h1|62X

· · ·
∑

|ht−1|62X

∑
x∈It−1

|K(θ;X; h;x)|2
k−t−1

� X2k−1−k
∑

|h1|62X

· · ·
∑

|ht−1|62X

∑
|g1|62X

· · ·
∑

|gk−t−1|62X

∑
x∈It−1

Υ(θ; g,h;x), (3.13)

where
Υ(θ; g,h;x) =

∣∣∣ ∑
y∈Ik−t−1

e(θq(y; g,h;x))
∣∣∣. (3.14)

We next observe that following a simple calculation (see, for example, the proof of Vaughan [27,
Lemma 2.4]), one has that ∆k−t−1(yk−t−1; g) is independent of y, and further that

∆k−t−1(yk−t; g) = 1
2 (k − t)!g1 . . . gk−t−1(2y + g1 + · · ·+ gk−t−1)

and
∆t−1(xt; h) = 1

2 t!h1 . . . ht−1(2x+ h1 + · · ·+ ht−1).

Consequently, when the expression

(2x+ h1 + · · ·+ ht−1)h1 . . . ht−1g1 . . . gk−t−1 (3.15)

is non-zero, it follows from (3.12) and (3.14) that

Υ(θ; g,h;x)

� min{X, ‖ 1
2Ct(k − t)!t!(2x+ h1 + · · ·+ ht−1)h1 . . . ht−1g1 . . . gk−t−1θ‖−1}.
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Since there are at most O(Xk−2) values of x, g, h counted in the summations concluding (3.13) for
which the expression (3.15) is zero, it follows from (3.13) via an elementary estimate for the divisor
function that

|H(α/D;β, γ;X)|2
k−2

� X2k−1−k
(
Xk−1 +Xε

∑
16h6G

min{X, ‖hα/D‖−1}
)
, (3.16)

where G = t!(k − t)!|Ct|t(2X)k−1. Plainly, when q>Xk one has

|H(α/D;β, γ;X)|6(2X + 1)2

via a trivial estimate. When 16q < Xk, meanwhile, on recalling that D depends at most on the
coefficients of Φ, it follows from (3.16) and Lemma 3.1 that the estimate (3.6) holds once again. Thus
the estimate (3.6) holds no matter how large q may be.

Finally, we apply Lemma 2.2 to deduce in combination with (3.6) that whenever Φ(u, v) is non-
degenerate, then there is a condensation Ψ of Φ, a positive integer D depending at most on the coeffi-
cients of Φ, and a positive real number X with X � P , such that

|F (α;P,Q)| � (logX)2 sup
β,γ∈R

|H(α/D;β, γ;X)|

� X2+ε(q−1 +X−1 + qX−k)22−k

.

This completes the proof of Theorem 1.

4. Integral points on affine plane curves

The proof of our analogue of Hua’s Lemma for exponential sums over binary forms depends for its
success on estimates for the number of integral points on affine plane curves. In this section we record
the necessary estimates for later use. Our basic tool is the following result of Bombieri and Pila [7] (we
remark that earlier less precise conclusions would suffice for our purposes).

Lemma 4.1. Let C be the curve defined by the equation F (x, y) = 0, where F (x, y) ∈ R[x, y] is an
absolutely irreducible polynomial of degree d>2. Also, let N> exp(d6). Then the number of integral
points on C, and inside a square [0, N ]× [0, N ], does not exceed

N1/d exp(12(d logN log logN)1/2).

Proof. This is Theorem 5 of Bombieri and Pila [7].

In most applications of the above lemma, one is forced to enter into non-trivial discussions concerning
the absolute irreducibility of polynomials, but in our present situation we are able largely to avoid such
deliberations by averaging.

Lemma 4.2. Let N denote a non-empty set of integers, associated to each one of which is a positive
real number w(n). Also, let X denote a large real number. Suppose that F (x, y) ∈ Z[x, y] is a non-
degenerate polynomial of degree d>2, and that X is sufficiently large in terms of d. Suppose also that
for some fixed positive number A one has that the coefficients of F are each bounded in absolute value
by XA, and moreover that for each element n of N one has |n|6XA. Let E(X;N ) denote the number
of solutions of the diophantine equation F (x, y) = n, with n ∈ N and (x, y) ∈ [−X,X]2 ∩ Z2, and with
each solution (x, y, n) counted with weight w(n). Then for each positive number ε, one has

E(X;N )� X1/2+ε
∑
n∈N

w(n) +X max
n∈N

w(n),

where the implicit constant depends at most on d, ε and A, and otherwise is independent of the coeffi-
cients of F .

Proof. Consider some integer n ∈ N . If F (x, y)−n is absolutely irreducible, then the weighted number
B(n) of solutions of the equation F (x, y) = n, with (x, y) ∈ [−X,X]2 ∩Z2, may be estimated by means
of Lemma 4.1. Thus we obtain

B(n)� X1/2+εw(n). (4.1)
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If F (x, y) − n is not absolutely irreducible, then the non-degeneracy of F (x, y) ensures that in this
instance one has

B(n)� Xw(n). (4.2)

In this latter circumstance, moreover, one may write the polynomial F (x, y)− n as a product of abso-
lutely irreducible factors, say

F (x, y)− n =

l∏
j=1

gj(x, y)

m∏
k=1

hk(x, y), (4.3)

where l +m>2, and where gj(x, y) ∈ R[x, y] (16j6l), and

hk(x, y) = uk(x, y) + vk(x, y)
√
−1 (16k6m),

with uk, vk ∈ R[x, y]. Since hk(x, y) is presumed to be absolutely irreducible, we may suppose that
uk(x, y) and vk(x, y) have no non-trivial polynomial common divisor over C[x, y]. It therefore follows
from Bezout’s Theorem that the number of solutions of the simultaneous equations uk(x, y) = vk(x, y) =
0 is bounded above by d2. By considering real and imaginary components, therefore, the number of
integral solutions of the equation hk(x, y) = 0 is also bounded above by d2. If the degree of gj(x, y)
exceeds 1 for any j, then the absolute irreducibility of gj(x, y) ensures, via Lemma 4.1, that the number of

integral solutions of the equation gj(x, y) = 0, with (x, y) ∈ [−X,X]2∩Z2, is O(X1/2+ε). Consequently,
it follows from (4.3) that the estimate (4.1) can fail to hold only if some gj(x, y) is a linear polynomial.

Suppose then that for some j with 16j6l, the polynomial gj(x, y) is linear. If gj(x, y) is not some
constant multiple of a Q-rational linear polynomial, then since gj(x, y) is necessarily a constant multiple
of a linear polynomial with algebraic coefficients, we deduce that the number of integral solutions of the
equation gj(x, y) = 0 is at most one. For we may remove the constant factor and consider components
with respect to some basis for the field extension containing the coefficients of gj(x, y). Then since
gj(x, y) is not a constant multiple of a Q-rational polynomial, it follows that the integral zeros of the
equation gj(x, y) = 0 necessarily satisfy at least two linearly independent Q-rational linear equations,
whence the desired conclusion follows. Thus far we have shown that if the estimate (4.1) fails to hold,
then necessarily the polynomial F (x, y)− n is divisible by some Q-rational linear polynomial. We next
examine the set N ∗ of those n ∈ N for which the latter situation occurs.

Suppose next that n0 is an integer satisfying the property that the polynomial F (x, y)−n0 is divisible
by the Q-rational polynomial ax + by + c. There is plainly no loss of generality in supposing a, b and
c to be integral, and we may choose integers a′ and b′ so that the polynomials ax + by and a′x + b′y
are linearly independent. Write ξ = ax + by + c and η = a′x + b′y. Then it follows that there is a
polynomial G(ξ, η) ∈ Z[ξ, η], and a positive integer ∆, such that

∆(F (x, y)− n0) = ξG(ξ, η). (4.4)

Before proceeding further we briefly investigate the dependence of G(ξ, η) on η. Observe first that since
F (x, y) is non-degenerate, then necessarily G(ξ, η) is explicit in η. Thus the polynomial ∂

∂ηG(ξ, η) is

non-trivial as a polynomial in η, and the set of its coefficients is a non-empty set consisting of certain
non-trivial polynomials in ξ of degree at most d − 2. Consequently, the set S of integers ξ0 for which
G(ξ0, η) is independent of η can have at most d− 2 elements. We write N0 for the set of integers n for
which

∆(n− n0) = ξ0G(ξ0, η),

for some ξ0 ∈ S. Note, in particular, that card(N0)6d− 2.
Let n ∈ N ∗ \ N0, and suppose that n 6= n0. Then it follows from (4.4) that the number of solutions

of the diophantine equation F (x, y) = n is bounded above by the number of integral solutions of the
equation

ξG(ξ, η) = ∆(n− n0), (4.5)

with ξ = ax + by + c and η = a′x + b′y for some (x, y) ∈ [−X,X]2 ∩ Z2. Since n 6= n0, the number of
divisors of ∆(n− n0) is O(Xε). Thus there are at most O(Xε) choices for ξ satisfying (4.5). Let ξ1 be
any one such, and consider the equation

G(ξ1, η) = ∆(n− n0)/ξ1. (4.6)
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On noting that n /∈ N0, we find that ξ1 /∈ S, and hence that G(ξ1, η) depends explicitly on η. Thus the
number of solutions in η of (4.6) is at most d− 1. Consequently, whenever n ∈ N ∗ \ (N0 ∪ {n0}), one
has

B(n)� Xεw(n). (4.7)

When n ∈ N0 ∪{n0}, meanwhile, one may apply the estimate (4.2). On recalling that card(N0)6d− 2,
therefore, we conclude from (4.1), (4.2) and (4.7) that

E(X;N ) =
∑
n∈N
B(n)

� X1/2+ε
∑

n∈N\N∗

w(n) +Xε
∑

n∈N∗\(N0∪{n0})

w(n) +X
∑

n∈N0∪{n0}

w(n)

� X1/2+ε
∑
n∈N

w(n) +X max
n∈N

w(n).

This completes the proof of the lemma.

The situation for quadratic equations is particularly easy to handle.

Lemma 4.3. Let a, b, c be integers with abc 6= 0, and let S(a, b, c;P ) denote the number of integral
solutions of the equation ax2 + by2 = c, with |x|6P and |y|6P . Then for each positive number ε, one
has S(a, b, c;P )� 1 + (|abc|P )ε.

Proof. This estimate is well-known (see, for example, Estermann [17] or Vaughan and Wooley [28,
Lemma 3.5]).

5. Hua’s Lemma for binary forms: preliminaries

The object of this and the next two sections is to establish the mean value estimates recorded in
Theorem 2. We begin here with some simplifying observations. Let Φ(x, y) ∈ Z[x, y] be a non-degenerate
binary form of degree k>3. In view of Lemma 2.3, in order to establish Theorem 2 it suffices to consider
the situation in which Φ(x, y) takes the shape

Φ(x, y) = Axk +Bxk−tyt +

k∑
j=t+1

Cjx
k−jyj , (5.1)

with AB 6= 0 and 26t6k. When X is a large real number, define

H(α;X) =
∑
|x|6X

∑
|y|6X

e(αΦ(x, y)), (5.2)

and write also
F (α;X) =

∑
|u|6X

e(αuk). (5.3)

Also, when j is a natural number, write

Ij(X) =

∫ 1

0

|H(α;X)|2
j−1

dα. (5.4)

We establish our most general conclusions by induction, using the following mean value estimate as
a starting point.

Lemma 5.1. When Φ(x, y) ∈ Z[x, y] is a non-degenerate form of degree k>3, and X is a large real
number, one has for each positive number ε the bound

Ij(X)� X2j−j+ε (j = 1, 2).

Proof. In view of (5.4), the case j = 1 follows immediately from the case j = 2 through an application
of Schwarz’s inequality. It suffices, therefore, to estimate I2(X). But by orthogonality, it follows from
(5.2) and (5.4) that

I2(X) = M(X), (5.5)
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where M(X) denotes the number of integral solutions of the equation

Φ(x1, y1) = Φ(x2, y2), (5.6)

with |xi|6X and |yi|6X (i = 1, 2). For each integer h, write r(h) for the number of representations
of h in the form Φ(x, y) = h, with |x|6X and |y|6X. Since Φ(x, y) is non-degenerate, one plainly has
r(0) = O(X). We claim that when h is non-zero, one has r(h) = O(Xε), whence it follows from (5.6)
that

M(X) =
∑
h∈Z

r(h)26r(0)2 + (max
h∈Z

r(h))
∑
h∈Z

r(h)

� X2 +Xε
∑
h∈Z

r(h)� X2+ε.

On recalling (5.5), we find that the conclusion of the lemma follows immediately from the latter bound.
In order to establish the above claim, we write Φ(x, y) as a product of irreducible factors over Z[x, y],

say
Φ(x, y) = Ψ1(x, y)Ψ2(x, y) . . .Ψr(x, y). (5.7)

If h is a non-zero integer and Φ(x, y) = h, then each Ψi(x, y) is a divisor of h. Familiar estimates for the
divisor function therefore show that there are at most O(hε) possible choices for integers di (16i6r)
such that d1d2 . . . dr = h and Ψi(x, y) = di (16i6r). But when a non-zero integer l has at most t
distinct prime divisors, and the degree of Ψi exceeds 2, then it follows from Bombieri and Schmidt [8]
that

card{(x, y) ∈ Z2 : Ψi(x, y) = l} � (deg(Ψi))
1+t � lε. (5.8)

Moreover, one may apply Lemma 4.3 to show that when Ψi has degree 2, one has

card{(x, y) ∈ [−X,X]2 ∩ Z2 : Ψi(x, y) = l} � (lX)ε. (5.9)

On recalling (5.7), therefore, and noting that r(h) is non-zero only when h = O(Xk), we conclude from
(5.8) and (5.9) that

r(h)� (hX)ε � X2ε, (5.10)

except possibly in circumstances where the decomposition (5.7) consists only of linear polynomials.
Suppose that the latter is indeed the case, and further that two of these polynomials are linearly
independent, say Ψl and Ψm. Since there can be at most one integral solution to the simultaneous
equations Ψl(x, y) = dl and Ψm(x, y) = dm, it again follows that the bound (5.10) holds. The only
remaining case to consider is that in which the decomposition (5.7) satisfies the property that each
Ψi(x, y) is linear, and is a constant multiple of Ψ1(x, y). But then Φ(x, y) = κ(Ψ1(x, y))k, for some real
number κ, and thus Φ(x, y) is degenerate. This contradicts the hypotheses of the lemma, and so the
proof of the lemma is complete.

Next we dispose swiftly of the diagonal case.

Lemma 5.2. Suppose that Φ(x, y) ∈ Z[x, y] is a non-degenerate binary form of degree k>2 of the shape
(5.1) with t = k. Let X be a large real number. Then for each integer j with 16j6k, and for each
positive number ε, one has

Ij(X)� X2j−j+ε.

Proof. In view of (5.1)-(5.3), when t = k one may write

H(α;X) = F (Aα;X)F (Bα;X),

and thus an application of Schwarz’s inequality to (5.4), together with a change of variables, reveals
that for each j with 16j6k, one has

Ij(X)�
(∫ 1

0

|F (Aα;X)|2
j

dα
)1/2(∫ 1

0

|F (Bα;X)|2
j

dα
)1/2

�
∫ 1

0

|F (α;X)|2
j

dα.
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The desired conclusion therefore follows immediately from the classical version of Hua’s Lemma (see,
for example, Lemma 2.5 of Vaughan [27]).

Consider next the situation in which Φ(x, y) takes the shape (5.1) with k>4 and t = k − 1, so that
for some integers a, b, c with ab 6= 0, one has

Φ(x, y) = axk + bxyk−1 + cyk. (5.11)

If c 6= 0, we may write u = kcy + bx and v = x, and thereby obtain an identity of the form

∆Φ(x, y) = Ψ(u, v),

where ∆ is some non-zero integer, and Ψ(u, v) takes the shape (2.3) with AB 6= 0 and t = 2. In such
circumstances, on writing

G(α;Y ) =
∑
|u|6Y

∑
|v|6Y

e(αΨ(u, v)),

it follows via the argument of the proof of Lemma 2.3 that for every natural number s, one has∫ 1

0

|H(α;X)|2sdα�
∫ 1

0

|G(α;Y )|2sdα,

where Y is a real number exceeding X by a factor depending only on the coefficients of Φ(x, y). We
discuss the situations in which k = 3, or else k>4 and 26t6k − 2, in §§6 and 7 below. Consequently,
when k>4 and t = k − 1, we may restrict attention to polynomials of the shape (5.11) with c = 0 and
ab 6= 0.

Lemma 5.3. Suppose that Φ(x, y) ∈ Z[x, y] has the shape (5.11) with c = 0 and ab 6= 0. Suppose also
that k>3 and that X is a large real number. Then for each integer j with 16j6k, and for each positive
number ε, one has

Ij(X)� X2j−j+ε. (5.12)

Proof. The bound (5.12) is immediate from Lemma 5.1 when j = 1, 2. Suppose then that j is an integer
with 26j6k − 1, and that the inequality (5.12) holds. We aim to show that (5.12) holds also with j
replaced by j + 1, whence the upper bound (5.12) holds for each j satisfying 16j6k.

We first remove the contribution to Ij+1(X) arising from a trivial part of the exponential sum
H(α;X). Plainly,

|H(α;X)| � X +
∣∣∣ ∑
16|x|6X

∑
|y|6X

e(α(axk + bxyk−1))
∣∣∣.

Write
h(α;X) =

∑
|y|6X

e(αyk−1).

Then it follows from (5.4) via Hölder’s inequality that

Ij+1(X)� X2j−1

Ij(X) +

∫ 1

0

∣∣∣H(α;X)
∑

16|x|6X

∑
|y|6X

e(α(axk + bxyk−1))
∣∣∣2j−1

dα

� X2j−1

Ij(X) +X2j−1−1N(X), (5.13)

where

N(X) =

∫ 1

0

|H(α;X)|2
j−1 ∑

16|x|6X

|h(bxα;X)|2
j−1

dα. (5.14)

By orthogonality, it follows from (5.14) that N(X) is equal to the number of integral solutions of the
equation

bx

2j−2∑
i=1

(yk−1
i − zk−1

i ) =

2j−2∑
i=1

(Φ(ui, vi)− Φ(ti, wi)), (5.15)
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with 16|x|6X, and with each of yi, zi, ui, vi, ti, wi (16i62j−2) bounded in absolute value by X. Let
N0(X) denote the number of such solutions of (5.15) with the right hand side of the equation equal to
zero, and let N1(X) denote the corresponding number of solutions with the latter expression non-zero.
Then one has

N(X) = N0(X) +N1(X). (5.16)

We first estimate N0(X). On considering the underlying diophantine equations, and recalling (5.4),
we have

N0(X)� XIj(X)

∫ 1

0

|h(α;X)|2
j−1

dα.

Then on recalling the classical version of Hua’s Lemma (see Vaughan [27, Lemma 2.5]), we find that
when 26j6k − 1 one has

N0(X)� X2j−1−j+2+εIj(X). (5.17)

In order to estimate N1(X) we require some notation. For each integer h, we denote by r(n;h) the
number of representations of the integer n in the form

n = h
2j−2∑
i=1

(yk−1
i − zk−1

i ),

with |yi|6X and |zi|6X (16i62j−2). Similarly, for each integer n we take R(n) to be the number of
representations of n in the form

n =

2j−2∑
i=1

(Φ(ui, vi)− Φ(ti, wi)),

with each of ui, vi, ti, wi (16i62j−2) bounded in absolute value by X. Then it follows that

N1(X)6
∑

16|n|62j−1Xk

R(bn)
∑
h|n
|h|6X

r(n;h).

Consequently, on recalling an elementary estimate for the divisor function, we deduce from Cauchy’s
inequality that

N1(X)6
(∑
n∈Z

R(bn)2
)1/2( ∑

16|n|62j−1Xk

( ∑
h|n
|h|6X

r(n;h)
)2)1/2

� Xε
(∑
n∈Z

R(n)2
)1/2(∑

n∈Z

∑
16|h|6X

r(n;h)2
)1/2

. (5.18)

But on considering the underlying diophantine equations, it follows from (5.18) that

N1(X)� Xε(Ij+1(X))1/2
(
X

∫ 1

0

|h(α;X)|2
j

dα
)
,

whence, on recalling the classical version of Hua’s Lemma (see Vaughan [27, Lemma 2.5]), we may
conclude that when 26j6k − 1 one has

N1(X)� Xε(Ij+1(X))1/2(X2j−j+1+ε)1/2. (5.19)

On combining (5.13), (5.16), (5.17) and (5.19), we arrive at the estimate

Ij+1(X)� (X2j−1

+X2j−j+1+ε)Ij(X) +X2j− 1
2 (j+1)+ε(Ij+1(X))1/2.

Consequently, for 26j6k − 1 it follows from our inductive hypothesis (5.12) that

Ij+1(X)� X2j+1−j−1+ε +X2j− 1
2 (j+1)+ε(Ij+1(X))1/2,

whence the estimate (5.12) follows with j replaced by j + 1. The conclusion of the lemma therefore
follows by induction.
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6. Hua’s Lemma for binary forms: the inductive step

We are prepared now for our main assault on the proof of Theorem 2. We consider a non-degenerate
binary form Φ(x, y) of the shape (5.1), and we define the exponential sum H(α;X) as in (5.2). In this
section we aim to bound Ij(X) for 16j6k − 1, and so in view of Lemma 5.1 we may suppose without
loss of generality that k>4. In view of Lemmata 5.2 and 5.3, moreover, together with the discussion
preceding the latter lemma, it suffices to establish Theorem 2 only in the cases where Φ(x, y) takes the
shape (5.1) with 26t6k − 2. We henceforth suppose that the latter is indeed the case.

The following lemma establishes the second estimate recorded in Theorem 2.

Lemma 6.1. Let Φ(x, y) ∈ Z[x, y] be a non-degenerate form of degree k>5 of the shape discussed above,
and let X be a large real number. Then for each integer j with 16j6k−1, and for each positive number
ε, one has

Ij(X)� X2j−j+ 1
2 +ε.

Proof. The conclusion of Lemma 6.1 when j = 1, 2 is established in Lemma 5.1 above. Hence we restrict
attention to those j with 36j6k − 1, and aim to show that for each such j one has

Ij(X)� X2j−1−1Ij−1(X) +X2j−j+ 1
2 +ε. (6.1)

The conclusion of the lemma plainly follows from (6.1) by induction, with the estimate I2(X)� X2+ε

providing the basis for the induction.
Suppose that j is an integer with 36j6k − 1. We begin our differencing process by noting that, as

a consequence of Cauchy’s inequality, one has

|H(α;X)|2 � X
∑
|u|6X

|J(α;u;X)|2, (6.2)

where we write

J(α;u;X) =
∑
|v|6X

e
(
α

k∑
i=t

Ciu
k−ivi

)
, (6.3)

and here we have taken the liberty of defining Ct to be B. We divide our treatment into cases according
to the value of t.

(a) Suppose that t>j − 1. It follows from (6.3) by Weyl differencing (see Lemma 3.2) that

|J(α;u;X)|2
j−2

� X2j−2−j+1
∑

|h1|62X

· · ·
∑

|hj−2|62X

∑
x∈Ij−2

e(αp(x;u; h)), (6.4)

where Ij−2 is an interval of integers contained in [−X,X], and the polynomial p(x;u; h) is defined by

p(x;u; h) =
k∑
i=t

Ciu
k−i∆j−2(xi;h1, . . . , hj−2). (6.5)

On applying Hölder’s inequality to (6.2), we obtain

|H(α;X)|2
j−2

� X2j−2−1
∑
|u|6X

|J(α;u;X)|2
j−2

,

and hence we deduce from (6.4) that

|H(α;X)|2
j−2

� X2j−1−jF(α), (6.6)

where
F(α) =

∑
|h1|62X

· · ·
∑

|hj−2|62X

∑
|u|6X

∑
x∈Ij−2

e(αp(x;u; h)). (6.7)
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On considering the underlying diophantine equations, it follows from (6.5)-(6.7) that

Ij(X)� X2j−1−j
∫ 1

0

F(α)|H(α;X)|2
j−2

dα

� X2j−1−jJ (X), (6.8)

where J (X) denotes the number of integral solutions of the equation

p(x;u; h) =

2j−3∑
l=1

(Φ(ul, vl)− Φ(tl, wl)), (6.9)

with |u|6X, |x|6X, and with ul, vl, tl, wl (16l62j−3) each bounded in absolute value by X, and
|hm|62X (16m6j − 2). We divide the solutions counted by J (X) into two types. Let J0(X) denote
the number of solutions of the equation (6.9) counted by J (X) in which the right hand side of (6.9) is
zero, and let J1(X) denote the corresponding number of solutions in which the right hand side of (6.9)
is non-zero. Then

J (X) = J0(X) + J1(X). (6.10)

We first bound J0(X). By hypothesis, one has that Ct is non-zero and that t>j−1, and thus it follows
from (6.5) that the polynomial p(x;u; h) is not identically zero. A simple counting argument therefore
shows that the number of integral zeros of p(x;u; h), with |u|6X, |x|6X and |hm|62X (16m6j − 2),
is at most O(Xj−1). Consequently, on considering the underlying diophantine equation, one finds from
(6.9) that

J0(X)� Xj−1Ij−1(X). (6.11)

Next we bound J1(X). We begin by observing that our hypotheses concerning Ct and j ensure that
one may write p(x;u; h) in the form

p(x;u; h) = h1 . . . hj−2

k∑
i=t

Diφk−i(u; h)ψi(x; h), (6.12)

where Di is an integer for t6i6k, and Dt 6= 0, and in which each ψi(x; h) is a polynomial with integral
coefficients of degree i − j + 2 with respect to x, and each φk−i(u; h) is a polynomial with integral
coefficients of degree k − i with respect to u. Indeed, one has φk−i(u; h) = uk−i (t6i6k), but it is
convenient to us for later use to frame p(x;u; h) in a more general shape. In particular, the polynomial
p(x;u; h) has degree k − t>2 with respect to u, and has degree at least one with respect to x.

When n is an integer, denote by R(n) the number of representations of n in the form

n =

2j−3∑
l=1

(Φ(ul, vl)− Φ(tl, wl)),

with ul, vl, tl, wl (16l62j−3) each bounded in absolute value by X. Similarly, when h1, . . . , hj−2 are
integers, denote by r(n; h) the number of representations of n in the form n = p(x;u; h), with |x|6X
and |u|6X. Then in view of (6.9) and (6.12), we find that

J1(X) =
∑

n∈Z\{0}

R(n)
∑
h1|n
|h1|62X

· · ·
∑
hj−2|n
|hj−2|62X

r(n; h).

By Cauchy’s inequality combined with an elementary estimate for the divisor function, therefore, we
obtain

J1(X)�
(∑
n∈Z

R(n)2
)1/2(

Xε
∑
n∈Z

∑
0<|h1|62X

· · ·
∑

0<|hj−2|62X

r(n; h)2
)1/2

. (6.13)

On considering the underlying diophantine equations, it follows from (6.13) that

J1(X)� Xε(Ij(X))1/2(K(X))1/2, (6.14)
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where K(X) denotes the number of integral solutions of the equation

F (x1, y1; h) = F (x2, y2; h), (6.15)

with |xi|6X, |yi|6X (i = 1, 2), and 0 < |hm|62X (16m6j − 2), where here we write

F (x, y; h) =
k∑
i=t

Diφk−i(x; h)ψi(y; h). (6.16)

Consider any fixed one of the O(Xj−2) possible choices for h satisfying hm 6= 0 (16m6j − 2). We
claim that the polynomial F (x, y; h) is non-degenerate in terms of x and y. In order to verify this claim,
we begin by observing that in view of our earlier discussion, one has that the polynomial F (x, y; h) has
total degree k− j + 2 with respect to x and y, and yet has degree at most k− t6k− j + 1 with respect
to x. Thus the partial derivative

∂k−j+2

∂xk−j+2
F (x, y; h) (6.17)

is identically zero. But if F (x, y; h) were degenerate, then for some polynomial g(t) ∈ Q[t] of degree
k − j + 2, and for some integers a, b, c, one would have F (x, y; h) = g(ax + by + c). Further, since
F (x, y; h) is explicit in both x and y, one necessarily has that neither a nor b is zero. Consequently, if
F (x, y; h) is degenerate in the manner indicated, then one has

∂k−j+2

∂xk−j+2
F (x, y; h) =

∂k−j+2

∂xk−j+2
g(ax+ by + c) = (k − j + 2)!ak−j+2A0, (6.18)

where A0 is the leading coefficient of g(t). But the expression (6.18) is non-zero, and this contradicts
our earlier observation that the expression (6.17) is identically zero. Thus F (x, y; h) is non-degenerate,
as claimed.

Next consider a fixed h with hm 6= 0 (16m6j−2). For each integer n we define w(n) to be the number
of solutions of the equation F (x, y; h) = n, with |x|6X and |y|6X. Since F (x, y; h) is non-degenerate,
it follows that w(n)� X for each n, and moreover one also has∑

n∈Z
w(n)� X2. (6.19)

Let N denote the set of integers n represented in the form F (x, y; h) = n. Then in the notation of
the statement of Lemma 4.2, we find that for each fixed h with hm 6= 0 (16m6j − 2), the number of
solutions of the equation (6.15) with |xi|6X, |yi|6X (i = 1, 2), is bounded above by

E(X;N )� X1/2+ε
∑
n∈Z

w(n) +X max
n∈Z

w(n).

In view of (6.19), therefore, we conclude that

E(X;N )� X5/2+ε,

whence
K(X)� Xj−2 max

h
E(X;N )� Xj+ 1

2 +ε. (6.20)

On combining (6.8), (6.10), (6.11), (6.14) and (6.20), we arrive at the estimate

Ij(X)� X2j−1−j
(
Xj−1Ij−1(X) +

(
Xj+ 1

2 +ε
)1/2

(Ij(X))1/2

)
,

whence
Ij(X)� X2j−1−1Ij−1(X) +X2j−j+ 1

2 +ε.

Thus the estimate (6.1) does indeed hold, and so in this case we have established the inductive step.
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(b) Suppose that t < j − 1. In this case we are able to follow the trail laid down in the previous case,
although now the Weyl differencing is performed in two phases. First, by Weyl differencing J(α;u;X)
we deduce from Lemma 3.2 that

|J(α;u;X)|2
t−1

� X2t−1−t
∑

|h1|62X

· · ·
∑

|ht−1|62X

∑
x∈It−1

e(αp̃(x;u; h)), (6.21)

where It−1 is an interval of integers contained in [−X,X], and the polynomial p̃(x;u; h) is defined by

p̃(x;u; h) =
k∑
i=t

Ciu
k−i∆t−1(xi;h1, . . . , ht−1). (6.22)

On applying Hölder’s inequality to (6.2), we obtain

|H(α;X)|2
t−1

� X2t−1−1
∑
|u|6X

|J(α;u;X)|2
t−1

,

and hence we deduce from (6.21) that

|H(α;X)|2
t−1

� X2t−t−1
∑

|h1|62X

· · ·
∑

|ht−1|62X

∑
x∈It−1

|K(α;X; h, x)|, (6.23)

where
K(α;X; h, x) =

∑
|u|6X

e(αp̃(x;u; h)).

Next Weyl differencing with respect to the second underlying variable, we deduce from Lemma 3.2 and
equation (6.22) that

|K(α;X; h, x)|2
j−t−1

� X2j−t−1−j+t
∑
|g1|62X

· · ·
∑

|gj−t−1|62X

∑
u∈Ij−t−1

e(αp(x;u; g,h)), (6.24)

where Ij−t−1 is an interval of integers contained in [−X,X], and the polynomial p(x;u; g,h) is now
defined by

p(x;u; g,h) =
k∑
i=t

Ci∆j−t−1(uk−i; g)∆t−1(xi; h). (6.25)

Applying Hölder’s inequality to (6.23), therefore, we deduce from (6.24) and (6.25) that

|H(α;X)|2
j−2

� X2j−1−2j−t−1−t
∑

|h1|62X

· · ·
∑

|ht−1|62X

∑
x∈It−1

|K(α;X; h, x)|2
j−t−1

� X2j−1−jG(α), (6.26)

where
G(α) =

∑
|h1|62X

· · ·
∑

|hj−2|62X

∑
x∈It−1

∑
u∈Ij−t−1

e(αp(x;u; g,h)), (6.27)

and here we write
h = (h1, . . . , ht−1) and g = (ht, . . . , hj−2). (6.28)

On considering the underlying diophantine equations, it follows from (6.25)-(6.27) that

Ij(X)� X2j−1−jJ (X), (6.29)

where now J (X) denotes the number of solutions of the equation

p(x;u; g,h) =

2j−3∑
l=1

(Φ(ul, vl)− Φ(tl, wl)), (6.30)
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with |x|6X, |u|6X, and each of ul, vl, tl, wl (16l62j−3) bounded in absolute value by X, and with
|hm|62X (16m6j − 2), under the same convention regarding g and h as in (6.28).

Observe that our hypotheses concerning Ct, j and t ensure that one may write p(x;u; g,h) in the
form

p(x;u; g,h) = h1 . . . hj−2

k∑
i=t

Diφk−i(u; h)ψi(x; h), (6.31)

where Di is an integer for t6i6k, and Dt 6= 0, and in which each ψi(x; h) is a polynomial with
integral coefficients of degree i − t + 1 with respect to x, and each φk−i(u; h) is a polynomial with
integral coefficients of degree max{0, k− i− j + t+ 1} with respect to u. In particular, the polynomial
p(x;u; g,h) has degree k − j + 1>2 with respect to u, and has degree at least one with respect to x.
A comparison between (6.31) and (6.12), and the associated discussions, reveals that the polynomials
p(x;u; h) and p(x;u; g,h) differ in a manner superficial so far as our method for estimating J (X) is
concerned. Thus, by the argument of part (a) above, mutatis mutandis, one obtains the estimate (6.1)
once again, and this completes the proof of the inductive step.

This completes the proof of the lemma.

7. Hua’s Lemma for binary forms: the final stages

In order to complete our proof of Theorem 2, we have now only to consider large moments of
H(α;X) and establish the final two estimates of the statement of Theorem 2, together with part of the
first estimate. This we achieve in two stages, first exploiting Lemma 4.3 with a differencing process
of order k − 3, and finally making use of Theorem 1 via the Hardy-Littlewood method. In order to
describe these stages in detail, we require some further notation. When X is a large real number and
s is a natural number, define

Is(X) =

∫ 1

0

|H(α;X)|2sdα.

Lemma 7.1. Let Φ(x, y) ∈ Z[x, y] be a non-degenerate form of degree k>4 of the shape discussed in
the preamble to the statement of Lemma 6.1. Then for each natural number s, and for each positive
number ε, one has

Is+2k−4(X)� X2k−2−1Is(X) +X2k−2− 1
2 (k−1)+ε(I2s(X))1/2.

Proof. We begin by Weyl differencing k− 3 times following the pattern of the proof of Lemma 6.1. We
divide into cases.

(a) Suppose that t = k − 2. On recalling (6.6) and (6.7), we find that

|H(α;X)|2
k−3

� X2k−2−k+1F(α), (7.1)

where
F(α) =

∑
|h1|62X

· · ·
∑

|hk−3|62X

∑
|u|6X

∑
x∈Ik−3

e(αp(x;u; h)), (7.2)

p(x;u; h) =

k∑
i=k−2

Ciu
k−i∆k−3(xi; h), (7.3)

and Ik−3 is an interval of integers contained in [−X,X]. Here we again write Ct in place of B. On
considering the underlying diophantine equations, it follows from (7.1)-(7.3) that

Is+2k−4(X)� X2k−2−k+1

∫ 1

0

F(α)|H(α;X)|2sdα

� X2k−2−k+1J (X), (7.4)

where J (X) denotes the number of integral solutions of the equation

p(x;u; h) =
s∑
l=1

(Φ(ul, vl)− Φ(tl, wl)), (7.5)
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with |u|6X, |x|6X, and with ul, vl, tl, wl (16l6s) each bounded in absolute value by X, and |hm|62X
(16m6k−3). We divide the solutions counted by J (X) into two types. Let J0(X) denote the number
of solutions of the equation (7.5) counted by J (X) in which the right hand side of (7.5) is zero, and let
J1(X) denote the corresponding number of solutions in which the right hand side of (7.5) is non-zero.
Then

J (X) = J0(X) + J1(X). (7.6)

We first bound J0(X). By hypothesis, one has that Ct is non-zero and that t = k − 2, and thus it
follows from (7.3) that the polynomial p(x;u; h) is not identically zero. A simple counting argument
therefore shows that the number of integral zeros of p(x;u; h), with |u|6X, |x|6X and |hm|62X
(16m6k−3), is at most O(Xk−2). Consequently, on considering the underlying diophantine equations,
one finds from (7.5) that

J0(X)� Xk−2Is(X). (7.7)

Next we bound J1(X). We begin by observing that our hypotheses concerning Ct and t ensure that
p(x;u; h) takes the shape

p(x;u; h) = h1 . . . hk−3F (u, x; h), (7.8)

where
F (u, x; h) = D2χ2(u; h)ω1(x; h) +D1χ1(u; h)ω2(x; h) +D0χ0(u; h)ω3(x; h), (7.9)

and Di is an integer for i = 0, 1, 2, and D2 6= 0, and in which each χi(u; h) is a polynomial with
integral coefficients of degree i with respect to u and h, and each ωi(x; h) is a polynomial with integral
coefficients of degree i with respect to x and h.

When n is an integer, denote by R(n) the number of representations of n in the form

n =
s∑
l=1

(Φ(ul, vl)− Φ(tl, wl)),

with ul, vl, tl, wl (16l6s) each bounded in absolute value by X. Similarly, when h1, . . . , hk−3 are
integers, denote by r(n; h) the number of representations of n in the form n = p(x;u; h), with |x|6X
and |u|6X. Then in view of (7.5) and (7.8), we find that

J1(X) =
∑

n∈Z\{0}

R(n)
∑
h1|n
|h1|62X

· · ·
∑

hk−3|n
|hk−3|62X

r(n; h).

By Cauchy’s inequality combined with an elementary estimate for the divisor function, therefore, we
obtain

J1(X)�
(∑
n∈Z

R(n)2
)1/2(

Xε
∑

n∈Z\{0}

∑
0<|h1|62X

· · ·
∑

0<|hk−3|62X

r(n; h)2
)1/2

.

Thus, by considering the underlying diophantine equations, it follows that

J1(X)� Xε(I2s(X))1/2(K(X))1/2, (7.10)

where K(X) denotes the number of integral solutions of the equation

F (x1, y1; h) = F (x2, y2; h), (7.11)

with |xi|6X, |yi|6X (i = 1, 2), and 0 < |hm|62X (16m6k − 3), and subject to the condition that
F (xi, yi; h) 6= 0 (i = 1, 2).

We next transform the equation (7.11) into a form amenable to the application of Lemma 4.3. First
we rewrite the polynomial F (x, y; h) in the form

F (x, y; h) = α(y; h)x2 + β(y; h)x+ γ(y; h), (7.12)

where by (7.9) we have that α(y; h) is a non-trivial linear polynomial in y and h with integral coefficients,
and is explicit in y. For a fixed h with 0 < |hm|62X (16m6k − 3), let K1(X; h) denote the number
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of solutions of the equation (7.11) counted by K(X) in which α(yi; h) = 0 for i = 1 or 2. Define the
polynomial ∆(y; h) by

∆(y; h) = β(y; h)2 − 4α(y; h)γ(y; h), (7.13)

and let K2(X; h) denote the corresponding number of solutions of (7.11) in which α(yi; h) 6= 0 (i = 1, 2),
and one has that ∆(y; h) is identically zero as a polynomial in y. Let K3(X; h) denote the corresponding
number of solutions in which α(yi; h) 6= 0 (i = 1, 2), and ∆(y; h) is not identically zero as a polynomial
in y, and moreover one has

α(y2; h)∆(y1; h) = α(y1; h)∆(y2; h). (7.14)

Finally, let K4(X; h) denote the corresponding number of solutions with α(yi; h) 6= 0 (i = 1, 2), and for
which the equation (7.14) does not hold. Then plainly,

K(X)6
∑

0<|h1|62X

· · ·
∑

0<|hk−3|62X

4∑
i=1

Ki(X; h). (7.15)

We first bound K1(X; h). Suppose first that α(yi; h) = 0 for i = 1, 2. Since α(y; h) is a non-trivial
linear polynomial in y, it follows that for any fixed h there is at most one permissible choice for y.
Since there are trivially O(X2) possible choices for x, we find that the contribution to K1(X; h) from
this first class of solutions is O(X2). Consider next the remaining solutions for which α(yi; h) = 0 for
at most one value of i. By relabelling variables, we may suppose that α(y1; h) = 0. It again follows
that for any fixed h there is at most one permissible choice for y1 satisfying α(y1; h) = 0. Fix any one
of the O(X) available choices for x1, and consider the equation (7.11). Since α(y2; h) is non-zero, it
follows from (7.12) that F (x2, y2; h) is explicit in both x2 and y2, and consequently a simple counting
argument reveals that the number of possible choices for x2 and y2 satisfying (7.11) is O(X). Thus
there are O(X2) solutions of this second type, whence

K1(X; h)� X2. (7.16)

Next consider solutions counted by K2(X; h). Since α(y; h) is a non-trivial linear polynomial in y,
it follows from (7.13) that if ∆(y; h) is identically zero as a polynomial in y, then β(y; h) is divisible
by the polynomial α(y; h). Such is immediate when γ(y; h) is non-zero, and when γ(y; h) is equal to
zero one has β(y; h) = 0, and the desired conclusion again follows. But if β(y; h) is divisible by α(y; h),
then the vanishing of ∆(y; h) ensures, by (7.13), that γ(y; h) is also divisible by α(y; h). We therefore
deduce that for some non-zero integers κ1, κ2, and some polynomial in y with integral coefficients, say
δ(y; h), one has

κ1F (x, y; h) = α(y; h)(κ2x+ δ(y; h))2 (7.17)

identically as a polynomial in x and y. Let x2 and y2 be any one of the O(X2) permissible choices
counted by K2(X; h). By hypothesis, one has F (x2, y2; h) 6= 0. But then it follows from (7.11) and
(7.17) that α(y1; h) and κ2x1 + δ(y1; h) are both divisors of the fixed non-zero integer κ1F (x2, y2; h).
By elementary estimates for the divisor function, therefore, there are at most O(Xε) possible choices
for integers d1 and d2 with α(y1; h) = d1 and κ2x1 + δ(y1; h) = d2. The first of the latter equations
uniquely determines y1, since α(y; h) is explicit and linear in y, and consequently we obtain x1 uniquely
from the second of these equations. Thus we deduce that

K2(X; h)� X2+ε. (7.18)

Consider next the solutions x, y counted by K3(X; h). On the one hand, if the polynomial equation
(7.14) is non-trivial in y1 and y2, then a simple counting argument shows that there are O(X) permissible
choices for y1 and y2 satisfying (7.14). Given any one such choice of y, in view of the presumed non-
vanishing of α(yi; h) (i = 1, 2), it follows from (7.12) that the equation (7.11) is non-trivial in x1 and
x2, whence there are O(X) permissible choices of x1 and x2 satisfying (7.11). Consequently, the total
number of solutions of this type is O(X2). If, on the other hand, the polynomial equation (7.14) is
trivial in y1 and y2, then it follows that ∆(y; h) is a constant multiple of α(y; h). An inspection of
(7.13) therefore reveals that β(y; h) is divisible by α(y; h). But since ∆(y; h) is at most linear in y,
one finds that β(y; h) is identically zero, and that γ(y; h) is independent of y. In view of (7.12), the
equation (7.11) takes the shape

α(y1; h)x2
1 = α(y2; h)x2

2.
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A comparison between the polynomial α(y; h)x2 and that on the right hand side of (7.17) reveals that
we may now apply the argument concluding the treatment of K2(X; h) above in order to conclude that
the number of solutions of this type is O(X2+ε). Thus we have

K3(X; h)� X2+ε. (7.19)

Finally, we provide a bound for K4(X; h). Let x,y be a solution of (7.11) counted by K4(X; h).
Then on recalling (7.12), it follows from (7.11) that

α(y2; h) (2α(y1; h)x1 + β(y1; h))
2 − α(y1; h) (2α(y2; h)x2 + β(y2; h))

2

= α(y2; h)∆(y1; h)− α(y1; h)∆(y2; h). (7.20)

By hypothesis, for each of the O(X2) permissible values of y, one has that the right hand side of (7.20)
is a non-zero integer, say N . Fix any one such choice of y, and note that our hypotheses ensure also
that α(yi; h) 6= 0 (i = 1, 2). But by Lemma 4.3, the number of solutions of the equation

α(y2; h)ξ2 − α(y1; h)η2 = N,

with ξ and η bounded in absolute value by a fixed power of X, is O(Xε). Consequently, the number of
possible xi (i = 1, 2) is also O(Xε), and thus we conclude that

K4(X; h)� X2+ε. (7.21)

On recalling (7.10), (7.15), (7.16), (7.18), (7.19) and (7.21), we find that

J1(X)� (I2s(X))1/2(Xk−1+ε)1/2,

whence by (7.4), (7.6) and (7.7) we have

Is+2k−4(X)� X2k−2−1Is(X) +X2k−2− 1
2 (k−1)+ε(I2s(X))1/2.

Thus we have established the lemma when t = k − 2.

(b) Suppose that t < k − 2. On recalling (6.26) and (6.27), we find that

|H(α;X)|2
k−3

� X2k−2−k+1G(α), (7.22)

where
G(α) =

∑
|h1|62X

· · ·
∑

|hk−3|62X

∑
x∈It−1

∑
u∈Ik−2−t

e(αp(x;u; g,h)), (7.23)

p(x;u; g,h) =

k∑
i=t

Ci∆k−2−t(u
k−i; g)∆t−1(xi; h), (7.24)

and It−1 and Ik−2−t are intervals of integers contained in [−X,X], and here we write

h = (h1, . . . , ht−1) and g = (ht, . . . , hk−3). (7.25)

On considering the underlying diophantine equations, it follows from (7.22)-(7.24) that

Is+2k−4(X)� X2k−2−k+1J (X), (7.26)

where now J (X) denotes the number of solutions of the equation

p(x;u; g,h) =
s∑
l=1

(Φ(ul, vl)− Φ(tl, wl)),

with |u|6X, |x|6X, and each of ul, vl, tl, wl (16l6s) bounded in absolute value byX, and with |hm|62X
(16m6k − 3), under the same convention concerning g and h as in (7.25).

In view of the convention (7.25), our hypotheses on Ct and t ensure that the polynomial p(x;u; g,h)
has the form

p(x;u; g,h) = h1 . . . hk−3F (u, x; h),

where F (u, x; h) has the shape (7.9) discussed in the case (a) above. Thus the argument of the previous
section, mutatis mutandis, shows that

J (X)� Xk−2Is(X) + (Xk−1+ε)1/2(I2s(X))1/2,

and the conclusion of the lemma again follows, by means of (7.26).
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Lemma 7.2. Let Φ(x, y) ∈ Z[x, y] be a non-degenerate form of degree k>4 of the form described in the
preamble to the statement of Lemma 6.1. When k = 4, for each positive number ε one has∫ 1

0

|H(α;X)|4dα� X5+ε,

and when k>5, for each positive number ε one has∫ 1

0

|H(α;X)| 5
16 2k

dα� X
5
8 2k−k+1+ε.

Proof. We begin by considering the situation when k = 4. By Lemma 5.1 one has I1(X) � X2+ε,
whence by Lemma 7.1 it follows that

I2(X)� X3I1(X) +X5/2+ε(I2(X))1/2,

and so

I2(X)� X5+ε.

Thus the desired conclusion holds when k = 4. If, on the other hand, one has k>5, then we apply
Schwarz’s inequality in combination with Lemma 6.1 to obtain

I 3
16 2k−1(X) =

∫ 1

0

|H(α;X)| 3
16 2k

dα

6
(∫ 1

0

|H(α;X)|2
k−3

dα
)1/2(∫ 1

0

|H(α;X)|2
k−2

dα
)1/2

�
(
X2k−2−k+ 5

2 +ε
)1/2 (

X2k−1−k+ 3
2 +ε
)1/2

� X
3
8 2k−k+2+ε.

Consequently, an application of Lemma 7.1 now yields

I 5
16 2k−1(X)� X2k−2−1I 3

16 2k−1(X) +X2k−2− 1
2 (k−1)+ε

(
I 3

8 2k−1(X)
)1/2

� X
5
8 2k−k+1+ε +X2k−2− 1

2 (k−1)+ε
(
I 3

8 2k−1(X)
)1/2

. (7.27)

One now observes that by means of a trivial estimate for H(α;X), on considering the underlying
diophantine equations, one has

I 3
8 2k−1(X) =

∫ 1

0

|H(α;X)| 38 2k

dα

� X2k−3

∫ 1

0

|H(α;X)| 5
16 2k

dα

= X2k−3

I 5
16 2k−1(X).

Consequently, in view of (7.27) one has

I 5
16 2k−1(X)� X

5
8 2k−k+1+ε +X

5
16 2k− 1

2 (k−1)+ε
(
I 5

16 2k−1(X)
)1/2

,

and the second conclusion of the lemma follows immediately.

In order to complete the proof of Theorem 2, we apply the Hardy-Littlewood method. In preparation
for this treatment, we record an estimate of use to us later in this paper.
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Lemma 7.3. Under the hypotheses of Theorem 1, whenever 16q6X and |qα− r|6X1−d, one has∑
16x6X

∑
16y6X

e(αΦ(x, y))� X2+ε(q +Xd|qα− r|)−22−d

. (7.28)

Proof. The estimate (7.28) follows immediately from Theorem 1 via a standard argument (see, for
example, Davenport and Heilbronn [15] or Exercise 2 of Vaughan [27, Chapter 2]).

Lemma 7.4. Let Φ(x, y) ∈ Z[x, y] be a non-degenerate form of degree k>3. Then when k = 3 or 4,
one has for each ε > 0 the upper bound∫ 1

0

|H(α;X)|2
k−1

dα� X2k−k+ε,

and when k>5, for each ε > 0 one has∫ 1

0

|H(α;X)| 9
16 2k

dα� X
9
8 2k−k+ε.

Proof. When r ∈ Z and q ∈ N, write

M(q, r) = {α ∈ [0, 1) : |qα− r|6X1−k}.
Take M to be the union of the intervals M(q, r) with 06r6q6X and (r, q) = 1. Note that the intervals
occurring in the latter union are disjoint. Also, write m = [0, 1) \M. Observe that by Theorem 1 one
has

sup
α∈m
|H(α;X)| � X2−22−k+ε.

Moreover, by Lemmata 5.1 and 7.2 one has the estimate∫ 1

0

|H(α;X)|s0(k)dα� X2s0(k)−k+1+ε,

where s0(k) = 2k−2 for k = 3, 4, and s0(k) = 5
162k when k>5. Thus we deduce that∫

m

|H(α;X)|s0(k)+2k−2

dα�
(

sup
α∈m
|H(α;X)|

)2k−2∫ 1

0

|H(α;X)|s0(k)dα

� X2s0(k)+2k−1−k+ε. (7.29)

Next, by (7.28) one has∫
M

|H(α;X)|s0(k)+2k−2

dα

� X2s0(k)+2k−1+ε
∑

16q6X

q∑
a=1

(a,q)=1

∫
|β|6(qXk−1)−1

(q +Xkq|β|)−1−s0(k)22−k

dβ.

Since s0(k)>2k−2 for each k, it follows that∫
M

|H(α;X)|s0(k)+2k−2

dα� X2s0(k)+2k−1−k+ε
∑

16q6X

q∑
a=1

(a,q)=1

q−2

� X2s0(k)+2k−1−k+2ε. (7.30)

Thus, on combining the estimates (7.29) and (7.30), we arrive at the conclusion∫ 1

0

|H(α;X)|s0(k)+2k−2

dα

=

∫
M

|H(α;X)|s0(k)+2k−2

dα+

∫
m

|H(α;X)|s0(k)+2k−2

dα

� X2s0(k)+2k−1−k+ε,

and the lemma follows immediately.

The proof of Theorem 2 is completed by applying Lemma 2.3 in combination with Lemmata 5.1, 5.2,
5.3, 6.1, 7.2 and 7.4.
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8. Estimates stemming from Vinogradov’s methods

When d is larger than 12 or so, a trivial argument employing estimates for exponential sums in a
single variable based on variants of Vinogradov’s methods provides bounds superior to those recorded
in Theorems 1 and 2. It is unfortunate that no more efficient method of exploiting Vinogradov’s ideas
seems to be available to estimate exponential sums over binary forms. Since the estimates stemming
from Vinogradov’s methods are, in some sense, a trivial application of the latter techniques, we will be
brief in our discussion. We first require some notation.

When s and k are natural numbers, and P is a positive real number, we define Js,k(P ) to be the
number of solutions of the system of diophantine equations

s∑
i=1

(xji − y
j
i ) = 0 (16j6k),

with 16xi, yi6P (16i6s). We say that an exponent ∆(s, k) is permissible whenever the exponent has
the property that Js,k(P )� Pλs,k , with

λs,k = 2s− 1
2k(k + 1) + ∆(s, k).

It follows easily that any permissible exponent ∆(s, k) is non-negative, and moreover, without loss
of generality, that ∆(s, k)6 1

2k(k + 1). The calculation of the strongest permissible exponents ∆(s, k)
presently attainable is a matter of considerable complexity, and so there seems little point in discussing
such bounds in detail within this paper. Instead, we refer the reader to Wooley [29], [30] and forthcoming
work of Boklan and Wooley [6] for details on the strongest available permissible exponents. In the
present context it suffices to indicate the general shape of the available bounds. On one hand we have
the classical permissible exponents

∆(rk, k) = 1
2k

2(1− 1/k)r, (8.1)

valid for r, k ∈ N (see, for example, Vaughan [27, Theorem 5.1]). On the other hand, the more recent
estimates of Wooley [29] yield permissible exponents tending to zero essentially twice as fast with respect
to r as the exponent (8.1). Thus, when k is sufficiently large one has that the exponents ∆(rk, k) are
permissible, where

∆(rk, k) = k2 log k

(
1− 2

k
(1− 1/ log k)

)r
for 16r6r1(k), (8.2)

and

∆(rk, k) = 5(log k)3

(
1− 3

2k
(1− 1/k)

)r−r1(k)

for r > r1(k), (8.3)

where here we write r1(k) = [k(log k − log log k)] + 1.
Estimates of the type described above lead immediately to improvements on Theorem 2 when d is

large.

Theorem 8.1. Suppose that Φ(x, y) ∈ Z[x, y] is a non-degenerate form of degree k>3. Let s be a
natural number, and suppose that ∆(s, k) is a permissible exponent. Then for each integer m with
16m6k one has ∫ 1

0

∣∣∣ ∑
06x,y6P

e(αΦ(x, y))
∣∣∣2sdα� P 4s−k+ 1

m ∆(s−m(m−1)/2,k).

Proof. In view of Lemma 2.3, it suffices to establish the theorem when Φ(x, y) takes the shape (5.1)
with A 6= 0. But by Hölder’s inequality one has∫ 1

0

∣∣∣ ∑
06x,y6P

e(αΦ(x, y))
∣∣∣2sdα� P 2s−1

∑
06y6P

∫ 1

0

∣∣∣ ∑
06x6P

e(αΦ(x, y))
∣∣∣2sdα

� P 2s max
06y6P

∫ 1

0

∣∣∣ ∑
06x6P

e(αΦ(x, y))
∣∣∣2sdα. (8.4)
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But by a simple variant of Ford [18, Theorem 1], the integral on the right hand side of (8.4) satisfies,
for any integer m with 16m6k, the inequality∫ 1

0

∣∣∣ ∑
06x6P

e(αΦ(x, y))
∣∣∣2sdα� P 2s−k+ 1

m ∆(s−m(m−1)/2,k). (8.5)

The only issue with which one must contend in the application of the latter theorem concerns the
uniformity with respect to the parameter y. However, experts in the use of such efficient differencing
techniques within Vinogradov’s mean value theorem will rapidly circumvent such difficulties. The
desired conclusion follows on combining (8.4) and (8.5).

We next turn our attention to analogues of Theorem 1 stemming from Vinogradov’s methods.

Theorem 8.2. Suppose that Φ(x, y) ∈ Z[x, y] is a non-degenerate form of degree k>3.
(i) Let α ∈ R, and let λ be a real number with 0 < λ61. Suppose that whenever a ∈ Z and q ∈ N
satisfy (a, q) = 1 and |qα− a|6Pλ−k, then one has q > Pλ. Then for s> 1

2k(k− 1) and any permissible
exponent ∆(s, k − 1), one has ∣∣∣ ∑

06x,y6P

e(αΦ(x, y))
∣∣∣� P 2−µs(k)+ε,

where

µs(k) =
λ−∆(s, k − 1)

2s
.

(ii) Let α ∈ R, let r be an integer with 16r6 1
2k, and write λ = 1− r/k. Suppose that whenever a ∈ Z

and q ∈ N satisfy (a, q) = 1 and |qα − a|6Pλ−k, then one has q > Pλ. Then if s and t are positive
integers with s> 1

2k(k − 1), and the exponents ∆(s, k − 1) and ∆(t, k) are permissible, one has∣∣∣ ∑
06x,y6P

e(αΦ(x, y))
∣∣∣� P 2+ε

(
P−νs(k) + P−ρt(k)

)
,

where

νs(k) =
r −∆(s, k − 1)

2rs
and ρt(k) =

k − r(1 + ∆(t, k))

2tk
.

Proof. It follows from Lemma 2.2 that there is a polynomial Ψ(x, y) ∈ Z[x, y] satisfying condition (C),
a positive integer D depending at most on the coefficients of Φ, and a positive real number X with
X � P , satisfying the condition that for every real number α one has∣∣∣ ∑

06x,y6P

e(αΦ(x, y))
∣∣∣� X(logX)2 max

|v|6X
sup
β∈R
|hv(α/D;β;X)|, (8.6)

where

hv(θ;β;X) =
∑
|u|6X

e(θΨ(u, v) + βu).

But since the coefficient of uk in Ψ(u, v) is non-vanishing, and depends at most on the coefficients of Φ,
a simple variant of Vinogradov’s method (see, for example, Theorem 5.2 of Vaughan [27] and its proof)
yields, under the hypotheses of part (i) of the theorem, the estimate

|hv(α/D;β;X)| � X1−µs(k)+ε,

uniformly in v. The desired conclusion therefore follows immediately from (8.6). In order to establish
part (ii) of the theorem, we apply instead a simple variant of the argument of the proof of Theorem 2
of Wooley [31], and the desired conclusion follows in like manner.
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Corollary. Let α ∈ R, and suppose that there exist a ∈ Z and q ∈ N with (a, q) = 1, |α − a/q|6q−2

and P 1−1/
√
k6q6P k−1+1/

√
k. Then∣∣∣ ∑

06x,y6P

e(αΦ(x, y))
∣∣∣� P 2−ρ(k)+ε,

where, when k is large, one has ρ(k)−1 = 3
2k

2(log k +O(log log k)).

Proof. This conclusion is essentially immediate from Theorem 8.2 on making use of the permissible
exponents recorded in (8.2) and (8.3).

We remark that forthcoming work of Boklan and Wooley [6] will enable improvements in the above
estimates to be established when k is relatively small. We conclude this section by remarking that when
k is large, an application of the Hardy-Littlewood method, based on the use of the above corollary
together with Theorem 8.1 and the permissible exponents recorded in (8.2) and (8.3), shows that there
exists a natural number s0(k) such that whenever s>s0(k) one has∫ 1

0

∣∣∣ ∑
06x,y6P

e(αΦ(x, y))
∣∣∣2sdα� P 4s−k+ε.

Moreover, one may take s0(k) = 1
2k

2(log k + log log k +O(1)).

9. The addition of binary forms

This section is devoted to proving conclusions of the same type as Theorem 3 by means of the Hardy-
Littlewood method. Equipped at this point with Theorems 1 and 2, our application of the circle method
is essentially routine, and thus we will be brief in our exposition. Since it is no harder to establish, we
prove a localised version of Theorem 3 which yields more precise information concerning the density of
integral solutions of the equation (1.1). The modifications required to establish the stated version of
Theorem 3 are trivial, and will be easily accomplished even by an inexperienced reader.

Let k be a natural number with k>3, and let s be an integer exceeding s0(k), where the latter integer
is defined as in the statement of Theorem 3. We consider binary forms Φj(x, y) ∈ Z[x, y] of degree k
for 16j6s, the discriminant of each one of which we assume to be non-zero. Since the hypotheses of
Theorem 3 permit us to assume that the form Φ1(x1, y1) + · · · + Φs(xs, ys) is indefinite, we find that
there exists (ξ,η) ∈ R2s \ {0} with

Φ1(ξ1, η1) + · · ·+ Φ(ξs, ηs) = 0. (9.1)

Further, the discriminant of each Φj (16j6s) is non-zero, and so it follows that (ξ,η) is a non-singular
real solution of the equation (9.1). By homogeneity, moreover, there is no loss of generality in supposing
that

max
16j6s

{|ξj |, |ηj |}61.

Let τ be a positive number sufficiently small in terms of ξ and η, and define the boxes

Bj = {(ξ, η) ∈ R2 : |ξ − ξj |6τ and |η − ηj |6τ} (16j6s). (9.2)

Further, define B = B1 × B2 × · · · × Bs. We aim to obtain an asymptotic formula for the number,
N (P ) = Ns(PB; Φ), of integral solutions of the equation (1.1) satisfying (x,y) ∈ PB ∩Z2s (where here
we abuse notation by organising components in the obvious manner).

Define the exponential sums fj(α) (16j6s) by

fj(α) =
∑

(x,y)∈PBj

e(αΦj(x, y)) (16j6s).

Then by orthogonality one has

N (P ) =

∫ 1

0

f1(α)f2(α) . . . fs(α)dα. (9.3)
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We obtain an asymptotic formula for N (P ) by means of the Hardy-Littlewood method. Let δ be a

positive number with δ < 2−2−k, and write Q = P 2k−1δ. Let M denote the union of the intervals

M(q, r) = {α ∈ [0, 1) : |α− r/q|6QP−k}

with 06r6q6Q and (r, q) = 1, and let m = [0, 1) \M. We observe for later use that the former sets
M(q, r) are disjoint. Moreover, in view of (9.3),

N (P ) =

∫
M

f1(α) . . . fs(α)dα+

∫
m

f1(α) . . . fs(α)dα. (9.4)

The evaluation of the minor arc contribution is straightforward. Suppose that α ∈ m. By Dirichlet’s
theorem there exist r ∈ Z and q ∈ N with (r, q) = 1, 16q6Q−1P k, and satisfying |qα − r|6QP−k.
Further, since α 6∈ M, one necessarily has q > Q. Thus it follows directly from Theorem 1 that for
16j6s, one has

sup
α∈m
|fj(α)| � P 2+εQ−22−k

= P 2−2δ+ε.

We therefore deduce from Theorem 2 that for each j with 16j6s, one has∫
m

|fj(α)|sdα6
(

sup
α∈m
|fj(α)|

)s−s0(k)
∫ 1

0

|fj(α)|s0(k)dα

� P 2s−k−δ,

whence by Hölder’s inequality,∫
m

f1(α) . . . fs(α)dα�
s∏
j=1

(∫
m

|fj(α)|sdα
)1/s

� P 2s−k−δ. (9.5)

In order to analyse the major arc contribution we introduce some further notation. When r ∈ Z and
q ∈ N, we write

Sj(q, r) =

q∑
x=1

q∑
y=1

e

(
r

q
Φj(x, y)

)
(16j6s),

and when β ∈ R we write

vj(β) =

∫∫
PBj

e(βΦj(ξ, η))dξdη (16j6s).

A straightforward partial summation argument (see, for example, the proof of Lemma 2.7 of Vaughan
[27]) shows that whenever r ∈ Z and q ∈ N, then one has

fj(α)− q−2Sj(q, r)vj(α− r/q)� P (q + P k|qα− r|). (9.6)

When r ∈ Z and q ∈ N satisfy 06r6q6Q and (r, q) = 1, define f∗j (α) for |α− r/q|6QP−k by

f∗j (α) = q−2Sj(q, r)vj(α− r/q) (16j6s),

and define f∗j (α) to be zero otherwise. Then it follows from (9.6) that whenever α ∈M(q, r) ⊆M, one
has

fj(α)− f∗j (α)� PQ2. (9.7)

Since the measure of M is O(Q3P−k), it follows from (9.7) together with a trivial estimate for the fi(α)
that ∫

M

f1(α) . . . fs(α)− f∗1 (α) . . . f∗s (α)dα� (Q5P 1−k)(P 2)s−1 � P 2s−k−δ. (9.8)
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On combining (9.4), (9.5) and (9.8), we find that

N (P ) = C(Q,P )S(Q) +O(P 2s−k−δ), (9.9)

where for each positive number R we write

C(R,P ) =

∫ RP−k

−RP−k

v1(β) . . . vs(β)dβ (9.10)

and

S(R) =
∑

16q6R

q∑
r=1

(r,q)=1

q−2sS1(q, r) . . . Ss(q, r). (9.11)

We next analyse the singular integral C∗, which we define by

C∗ =

∫ ∞
−∞

v1(β) . . . vs(β)dβ. (9.12)

Note first that by the argument of the proof of Lemma 2.7 of Brüdern and Wooley [9], for each j one
has

vj(β)� P 2(1 + P k|β|)−2/k.

Then we deduce from (9.10) and (9.12) that for each positive number R one has

C∗ − C(R,P )� P 2s

∫ ∞
RP−k

(1 + P kβ)−2s/kdβ

� P 2s−kR−1/k.

It follows in particular that the singular integral C∗ is absolutely convergent, and moreover that

|C∗| � P 2s−k and C∗ − C(Q,P )� P 2s−k−δ. (9.13)

Next, by making a change of variables one obtains

C∗ = P 2s−kC, (9.14)

where

C =

∫ ∞
−∞

∫
B
e(β(Φ1(ξ1, η1) + · · ·+ Φs(ξs, ηs)))dξdηdβ.

In view of our hypothesis that (ξ,η) is a non-singular solution of (9.1), a standard application of Fourier’s
integral formula (see, for example, Lemma 6.2 of Davenport [11]) shows that C > 0, and indeed that
C is equal to the volume of the (2s − 1)-dimensional hypersurface determined by the equation (1.1)
contained in the box B.

We define the singular series S by

S =
∞∑
q=1

q−2s

q∑
r=1

(r,q)=1

S1(q, r) . . . Ss(q, r). (9.15)

We may analyse the singular series cheaply by noting that for each j, whenever (q, r) = 1 it follows
from Theorem 1 that

Sj(q, r)� q2−22−k+ε. (9.16)

On substituting (9.16) into (9.15), and recalling that s > 2k−1, we deduce that

S�
∞∑
q=1

q1−s22−k+ε �
∞∑
q=1

q−1−21−k

� 1. (9.17)
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Thus S converges absolutely, and moreover, on substituting (9.16) into (9.11) we find that

S−S(Q)�
∑
q>Q

q−1−2−1−k

� Q−21−k

� P−δ. (9.18)

On collecting together (9.9), (9.13), (9.14), (9.17) and (9.18), therefore, we may conclude thus far that

N (P ) = CSP 2s−k +O(P 2s−k−δ), (9.19)

where C > 0 is the aforementioned (2s− 1)-volume.
In order to complete our proof of Theorem 3, we have only to conclude our analysis of S. As is

familiar with complete exponential sums of arithmetic type, the sum Sj(q, r) has the quasi-multiplicative
property that whenever (q1q2, r) = (q1, q2) = 1, then one has

S(q1q2, r) = S(q1, rq
k−1
2 )S(q2, rq

k−1
1 ).

Thus a standard argument (see for example §2.6 of Vaughan [27]) shows that the function S(q), which
we define by

S(q) = q−2s

q∑
r=1

(r,q)=1

S1(q, r) . . . Ss(q, r), (9.20)

is a multiplicative function of q. In view of the absolute convergence of the series S, one therefore finds
that

S =
∏
p

vp, (9.21)

where the product is over prime numbers, and

vp =

∞∑
h=0

S(ph). (9.22)

But by (9.16), (9.20) and (9.22), one has that for each prime number p,

vp − 1�
∞∑
h=1

(ph)−1−21−k

� p−1−21−k

.

Then on taking p0 to be a sufficiently large constant depending at most on the coefficients of the Φj ,
one has

S =
(∏
p6p0

vp

)(∏
p>p0

(1 +O(p−1−21−k

))
)

=
(∏
p6p0

vp

)
(1 +O(p−21−k

0 )). (9.23)

Next we observe that when p is a prime number and h is a natural number, it follows from a standard
argument (see, for example, Lemma 2.12 of Vaughan [27]) that

h∑
l=0

S(pl) = ph(1−2s)M(ph),

where M(ph) denotes the number of solutions of the congruence

Φ1(x1, y1) + · · ·+ Φs(xs, ys) ≡ 0 (mod ph),

with 16xi, yi6ph (16i6s). Thus we find that

vp = lim
h→∞

ph(1−2s)M(ph), (9.24)

and so Theorem 3 follows in all essentials from (9.19), (9.21) and (9.24). In order to establish the
corollary to Theorem 3, we note that by Davenport and Lewis [16], for any integers a1, . . . , at, the
equation

a1x
k
1 + · · ·+ atx

k
t = 0
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possesses a non-trivial p-adic solution provided only that t > k2. If we set xi = λiyi (16i6s) in
(1.1), then it follows that for each choice of λ, the equation (1.1) possesses a non-trivial p-adic solution
provided only that s > k2. Since the Φj have non-zero discriminants, any such non-trivial p-adic
solution provides a non-singular p-adic solution to (1.1), and thus it follows easily that for every prime
p,

M(ph)� ph(1−2s).

We therefore deduce from (9.24) that vp > 0 for every prime number p, whence from (9.23) one has
S� 1. On recalling (9.17), (9.19), and our earlier conclusion that C > 0, therefore, we find that

P 2s−k � N (P )� P 2s−k,

whence the corollary also follows.

10. Distribution modulo one and binary forms

Experts will perceive that a pedestrian application of Theorem 1 will fail to achieve the exponent
claimed in Theorem 4. We must therefore engineer the kind of modification of Weyl’s inequality
described, for example, in Baker [3, §3.5]. We begin by recalling a lemma on reciprocal sums.

Lemma 10.1. Suppose that δ is a positive number, and that α and β are real numbers. Let N , R and
B be positive real numbers with B � N1+δ +R1+δ. Suppose further that∑

16z6R

min{N, ‖zα+ β‖−1} � B.

Then there exist a ∈ Z and q ∈ N with

(a, q) = 1, 16q � NRB−1 and |qα− a| < NδB−1.

Proof. This is Lemma 3.3 of Baker [3].

Next we establish an analogue of Weyl’s inequality.

Lemma 10.2. Let k be an integer with k>3 and let Φ(x, y) ∈ Z[x, y] be a non-degenerate homogeneous
form of degree k. When P is a large real number, define the exponential sum F (α;P ) by

F (α;P ) =
∑

16x6P

∑
16y6P

e(αΦ(x, y)). (10.1)

Suppose that δ is a positive number, and that L and A are positive real numbers with

L6P k and A� P 2k−1−1+δL.

Suppose further that ∑
16l6L

|F (lα;P )|2
k−2

� A. (10.2)

Then there exist a ∈ Z and q ∈ N with

(a, q) = 1, 16q6LP 2k−1+δA−1 and |qα− a|6P 2k−1−k+δA−1. (10.3)

Proof. By Lemma 2.2 there is a condensation Ψ of Φ, a non-zero integer D depending at most on the
coefficients of Φ, and a positive real number X with X � P , satisfying the property that for every real
number α one has

|F (α;P )| � (logX)2 sup
β,γ∈R

|H(α/D;β, γ;X)|, (10.4)

where H(θ;β, γ;X) is given by (2.4). We divide our argument into cases.
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Suppose first that Ψ(u, v) takes the shape (2.3) with 26t6k−1. In this case the differencing argument
leading to (3.16) shows that for all real numbers α, β, γ, one has

|H(α/D;β, γ;X)|2
k−2

� X2k−1−k+ε
(
Xk−1 +

∑
16h6G

min{X, ‖hα/D‖−1}
)
,

where G = t!(k − t)!|B|t(2X)k−1. On recalling the hypothesis (10.2), it therefore follows from (10.4)
together with a simple estimate for the divisor function that

A�
∑

16l6L

|F (lα;P )|2
k−2

� X2k−1−1+εL+X2k−1−k+ε
∑

16g6GL

min{X, ‖gα/D‖−1}. (10.5)

By hypothesis, one has

A� P 2k−1−1+δL� X2k−1−1+δL. (10.6)

Then since we may suppose that δ>3ε, it follows from (10.5) that∑
16g6GL

min{X, ‖gα/D‖−1} � AXk−2k−1−ε.

But (10.6) yields

AXk−2k−1−ε � Xk−1+δ−εL� X1+η + (GL)1+η,

where η = δ/(2k), and thus it follows from Lemma 10.1 that there exist b ∈ Z and r ∈ N with (b, r) = 1,

16r � XkL(AXk−2k−1−ε)−1 and |rα/D − b| < Xη(AXk−2k−1−ε)−1.

Write q = r/(r,D) and a = bD/(r,D). Then we may conclude that there exist a ∈ Z and q ∈ N with
(a, q) = 1,

16q � LX2k−1+εA−1 � LP 2k−1+δ/2A−1

and
|qα− a| � X2k−1−k+η+εA−1 < P 2k−1−k+δ/2A−1.

The first case of the lemma follows immediately.
Suppose next that Ψ(u, v) takes the shape (2.3) with t = k, so that for fixed integers A and B

depending at most on the coefficients of Φ, one has Ψ(u, v) = Auk + Bvk. This is essentially the
classical (diagonal) situation. But now the argument of §3 leading to (3.6) via (3.2) and (3.4) shows
that for all real numbers α, β, γ, one has

|H(α/D;β, γ;X)|2
k−2

� X2k−1−k+ε
(
Xk−1 +

∑
16h6G

min{X, ‖hα/D‖−1}
)
,

where now G = max{|A|, |B|}k!(2X)k−1. Then on recalling the hypothesis (10.2), it follows from (10.4)
together with a simple estimate for the divisor function that (10.5) again holds. It is therefore apparent
that the argument of the previous case, mutatis mutandis, again establishes the existence of a ∈ Z and
q ∈ N satisfying (10.3). This completes the proof of the lemma.

We are now equipped to prove Theorem 4. With the hypotheses of the statement of Theorem 4,
suppose, if possible, that with some large number N one has

‖αΦ(m,n)‖ > Nδ−22−d

for 16m,n6N . On recalling the notation (10.1), it follows from Harman [19, Lemma 5] that with

L = [N22−d−δ] + 1, one has ∑
16l6L

|F (lα;N)| > N2

6
.
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Then by Hölder’s inequality, ∑
16l6L

|F (lα;N)|2
d−2

� A,

where we write A = N2d−1

L1−2d−2

. On checking the hypotheses of Lemma 10.2, we may conclude that
there exist a ∈ Z and q ∈ N with

(a, q) = 1, 16q6LN2d−1+δA−1 and |qα− a|6N2d−1−d+δA−1.

Consequently, one has 16q6N1−2δ/3, whence

‖αΦ(q, q)‖6|Φ(1, 1)|qd−1|qα− a|

6|Φ(1, 1)|L2d−2−1N−1−δ/4

6L−16Nδ−22−d

.

This completes the proof of Theorem 4.
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9. J. Brüdern and T. D. Wooley, The addition of binary cubic forms, Philos. Trans. Roy. Soc. London Ser. A 356 (1998),

701–737.

10. S. Chowla and H. Davenport, On Weyl’s inequality and Waring’s problem for cubes, Acta Arith. 6 (1961/62), 505–521.
11. H. Davenport, Cubic forms in thirty-two variables, Philos. Trans. Roy. Soc. London Ser. A 251 (1959), 193–232.

12. H. Davenport, Cubic forms in 29 variables, Proc. Roy. Soc. Ser. A 266 (1962), 287–298.

13. H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, Ann Arbor Publishers, Ann
Arbor, 1962.

14. H. Davenport, Cubic forms in 16 variables, Proc. Roy. Soc. Ser. A 272 (1963), 285–303.
15. H. Davenport and H. Heilbronn, On Waring’s problem: two cubes and one square, Proc. London Math. Soc. 43

(1937), 73–104.

16. H. Davenport and D. J. Lewis, Homogeneous additive equations, Proc. Roy. Soc. Ser. A 274 (1963), 443–460.
17. T. Estermann, Einige Sätze über quadratfrei Zahlen, Math. Ann. 105 (1931), 653–662.

18. K. B. Ford, New estimates for mean values of Weyl sums, Internat. Math. Res. Notices (1995), 155–171.

19. G. Harman, Trigonometric sums over primes I, Mathematika 28 (1981), 249–254.
20. D. R. Heath-Brown, Cubic forms in ten variables, Proc. London Math. Soc. (3) 47 (1983), 225–257.

21. C. Hooley, On nonary cubic forms, J. Reine Angew. Math. 386 (1988), 32–98.

22. C. Hooley, On nonary cubic forms. II, J. Reine Angew. Math. 415 (1991), 95–165.
23. C. Hooley, On nonary cubic forms. III, J. Reine Angew. Math. 456 (1994), 53–63.

24. D. J. Lewis, Diophantine problems: solved and unsolved, Number Theory and Applications (Banff, AB, 1988), NATO

Adv. Sci. Inst. Ser. C Math. Phys. Sci. (R. A. Mollin, ed.), vol. 265, Kluwer Academic Publishers, Dordrecht, 1989,
pp. 103–121.

25. W. M. Schmidt, The density of integer points on homogeneous varieties, Acta Math. 154 (1985), 243–296.
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